
J. Fluid Mech. (2008), vol. 601, pp. 381–406. c© 2008 Cambridge University Press

doi:10.1017/S0022112008000748 Printed in the United Kingdom

381

Mode competition in modulated Taylor–Couette
flow

M. AVILA1, M. J. BELISLE2†, J. M. LOPEZ3, F. MARQUES1

AND W. S. SARIC4

1Departament de Fı́sica Aplicada, Univ. Politècnica de Catalunya, Barcelona 08034, Spain
2Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 5287,

USA
3Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, USA

4Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA

(Received 19 September 2007 and in revised form 23 January 2008)

The effects of harmonically oscillating the inner cylinder about a zero mean rotation in
a Taylor–Couette flow are investigated experimentally and numerically. The resulting
time-modulated circular Couette flow possesses a Z2 spatio-temporal symmetry which
gives rise to two distinct modulated Taylor vortex flows. These flows are initiated
at synchronous bifurcations, have the same spatial symmetries, but are characterized
by different spatio-temporal symmetries and axial wavenumber. Mode competition
between these two states has been investigated in the region where they bifurcate
simultaneously. In the idealized numerical model, the two flows have been found
to coexist and be stable in a narrow region of parameter space. However, in the
physical experiment, neither state has been observed in the coexistence region. Instead,
we observe noise-sustained flows with irregular time-dependent axial wavenumber.
Movies are available with the online version of the paper.

1. Introduction
Taylor–Couette flow, consisting of a viscous fluid confined in the gap between

two rotating cylinders, has been a cornerstone in the development of hydrodynamic
instability theory since the ground-breaking experimental and theoretical work of
Taylor (1923). For low angular velocities, the flow is steady and purely azimuthal. This
basic state is known as circular Couette flow. When the outer cylinder (of radius ro)
is at rest and the angular velocity of the inner cylinder (of radius ri) exceeds a
critical value, circular Couette flow becomes unstable and axisymmetric cells develop,
separated by radial jets of angular momentum emanating from the cylinder boundary
layers. This flow pattern, known as Taylor vortex flow, is steady and periodic in the
axial direction.

Time-harmonic modulations of the inner cylinder rotation have been and continue
to be of much interest. The original motivation for studying the effects of modulations
was the experimentally observed threshold shift to higher mean rotation for the
onset of sustained Taylor vortices (Donnelly 1964). Hall (1975), neglecting curvature
effects by taking the small-gap limit η = ri/ro → 1, performed a perturbation
analysis for small modulation amplitudes and frequencies, showing that in this limit
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the modulations slightly destabilize the basic state. His results were confirmed by
the Floquet analysis (also in the narrow-gap limit) of Riley & Laurence (1976),
contradicting the experimental results of Donnelly (1964). In an attempt to shed
light on the nature of this discrepancy, Carmi & Tustaniwskyj (1981) extended the
Floquet analysis to finite values of the radius ratio, i.e. including curvature effects.
However, their results showed a much larger degree of destabilization than the
previous theoretical and computational studies of Hall (1975) and Riley & Laurence
(1976), contradicting all of the previous experimental and theoretical work on the
problem. Barenghi & Jones (1989) performed nonlinear computations of the Navier–
Stokes equations for finite gap and confirmed the results of Hall (1975) and Riley &
Laurence (1976). They noted that the computations of Carmi & Tustaniwskyj (1981)
were performed with too large a time-step, so that in the low-frequency limit they were
unable to properly reproduce the exponential growth and decay of the perturbations
during a modulation period. Following Hall (1983), who showed that in the low-
frequency limit the most relevant perturbations are not periodic solutions of the
equations of motion, Barenghi & Jones (1989) introduced a low level of noise into
their computations and obtained qualitative agreement with Ahlers’ experimental
results which were published as an appendix to Barenghi & Jones (1989). They
concluded that the discrepancies regarding stability limits were due to noise-induced
difficulties in experimentally determining the onset of instability.

The Floquet analysis of Riley & Laurence (1976) in the narrow-gap limit showed
that for zero-mean modulations of the inner cylinder, two different time-periodic
Taylor vortex flows compete. For low frequencies the flow is characterized by a
reversal of the sign of the radial and axial velocities every half-period, whereas
for higher frequencies the radial and axial velocities pulse twice during a cycle
without changing sign. Nevertheless, none of the subsequent Floquet analyses for
finite values of the radius ratio (Carmi & Tustaniwskyj 1981; Barenghi & Jones
1989) detected competition between the two different modes. This was attributed to
a failure of the narrow-gap limit in the modulated Taylor–Couette system (Carmi
& Tustaniwskyj 1981). More recently, Youd, Willis & Barenghi (2003) performed
nonlinear computations for a medium gap (η = 0.75) and confirmed the existence
of these modes, terming them reversing and non-reversing Taylor vortex flow,
respectively. Consequently, it was not clear whether the linear stability results of
Riley & Laurence (1976) extended to the case of finite radius ratio η or if one or
both modes were due to nonlinear growth of finite-amplitude perturbations.

In this paper, we have performed a Floquet analysis of the basic state and found
that both reversing and non-reversing flows are due to linear instabilities of the basic
state, confirming the results of Riley & Laurence (1976). In fact, the instabilities
are pitchfork-of-revolution bifurcations in which the axial translation invariance is
broken. For non-reversing flow this is the only symmetry which is broken, whereas
the pitchfork-of-revolution bifurcation leading to reversing flow also breaks the
half-period-flip spatio-temporal symmetry under which the basic state is invariant.
Hydrodynamic systems with the same symmetries that bifurcate to two different
competing periodic modes have also been found numerically and experimentally in
periodically driven cavity flow (Marques, Lopez & Blackburn 2004; Vogel, Hirsa &
Lopez 2003) and in the wake of a circular cylinder (Barkley & Henderson 1996;
Williamson 1996). In those problems, the bifurcating states were named modes A and
B, and we shall adopt this nomenclature in the present problem, rather than using
the terms reversing and non-reversing. Here, we not only characterize the spatio-
temporal properties of the bifurcated flows, but also investigate mode competition in
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Figure 1. Schematic of modulated Taylor–Couette flow.

a neighbourhood of the codimension-two point where they bifurcate simultaneously,
using both nonlinear simulations and laboratory experiments.

2. Numerical formulation and symmetries
Consider an incompressible fluid of kinematic viscosity ν contained between two

concentric cylinders of inner and outer radii ri and ro. The inner cylinder rotates at an
angular velocity Ω(t∗) which is modulated harmonically in time about a zero mean

Ω(t∗) = Ωa sin(Ωmt∗). (2.1)

Figure 1 is a schematic of the system geometry. The dimensionless dynamical
parameters are the modulation amplitude, given by the Reynolds number Rea =
Ωadri/ν, and the modulation frequency ω = Ωmd2/ν, where d = ro − ri is the
gap between cylinders. The geometry of the annulus is defined by the radius ratio
η = ri/ro, which we fix at η = 0.5 in the computations to match that of the
experimental apparatus. For the Floquet analysis, the cylinders are assumed to be
infinite, whereas the nonlinear computations are performed in a long periodic annulus
with axial period 41.89 times the annular gap.

Using d and d2/ν as the space and time scales, the non-dimensional Navier–Stokes
equations are

∂tv + (v · ∇)v = −∇p + �v, ∇ · v = 0. (2.2)

The boundary conditions in cylindrical coordinates are

v(ri, θ, z, t) = (0, Re(t), 0), v(ro, θ, z, t) = 0, (2.3)

where Re(t) = Rea sin(ωt) is the instantaneous Reynolds number. The resulting
modulated Couette flow (mC) is purely azimuthal and synchronous with the imposed
harmonic oscillations

vmC = (0, Rea f (r) sin(ωt + α(r)), 0), (2.4)
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where f (r)eiα(r) is the solution of a second-order ODE satisfying the boundary
conditions (Lopez & Marques 2002); f can be expressed in terms of modified Bessel
functions, but here it has been computed using collocation at Gauss–Lobatto points.

The linear stability of mC (2.4) has been determined by Floquet analysis following
Lopez & Marques (2002). In order to investigate the dynamics of the bifurcated flows
beyond onset, nonlinear computations of the Navier–Stokes equations are required.
The velocity field is written as

v(r, θ, z, t) = vmC(r, t) + u(r, θ, z, t), (2.5)

and the perturbation u is discretized with a solenoidal spectral approximation

us(r, θ, z, t) =

L∑
l=−L

N∑
n=−N

M∑
m=0

alnm(t)ei(lkf z+nθ)ulnm(r), (2.6)

which satisfies axially periodic boundary conditions

v(r, θ, z, t) = v(r, θ, z + Λ, t), (2.7)

with Λ = 2π/kf .
The spectral scheme is obtained by substituting (2.5) in (2.2) and projecting over a

suitable set of test solenoidal fields. This projection yields a system of ODEs for alnm(t)
which is integrated in time with a semi-implicit method, using backward differences
for the diffusion term and polynomial extrapolation for the advective term (see Avila,
Meseguer & Marques 2006, for further details on the nonlinear numerical scheme).

It is very useful, in the time evolution, to monitor the kinetic energy associated with
each axial Fourier mode in the spectral approximation:

E l(t) =
1

2V

∫ Λ

0

dz

∫ 2π

0

dθ

∫ ro

ri

u∗
l ·ul r dr, (2.8)

where V is the volume of the annular domain, and ul is the lth axial component of
the perturbation field u

ul = eilkf z

N∑
n=−N

M∑
m=0

alnm(t)einθ ulnm(r). (2.9)

In order to account for several harmonics of the most unstable Fourier modes,
truncations of up to (L, M, N ) = (300, 20, 10) in (2.6) were used in the present
investigations. Nevertheless, for the parameter regimes investigated the flows were
found to be axisymmetric, in agreement with the experiments. Hence, only the n = 0
azimuthal mode makes a contribution to (2.9). The accuracy of the results was checked
by increasing the resolution to (L, M, N ) = (420, 24, 10), and the difference between
the two truncations is less than one part in a thousand in the computation of the
bifurcation curves Rea(ω) shown in figure 14.

2.1. Wavenumber selection in axially periodic flows

In a linear stability analysis, the axial wavenumber of the perturbation u varies
continuously. However, in the nonlinear computations the axial direction is treated
as being periodic and a suitable fundamental axial wavenumber kf in (2.6) has to
be selected such that the discretization resolves those axial modes responsible for
the instability. In order to illustrate how to choose kf , let us consider the infinite
cylinders case with the inner cylinder rotating at a constant angular speed, Re0, and
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Figure 2. (a) Neutral (solid line) and Eckhaus (dashed line) stability curves for Couette
flow with η = 0.5 and infinite cylinders (computations by Riecke & Paap 1986). The open
and filled circles correspond to the points in these curves with axial wavenumbers in our
spectral approximation (2.6), i.e. k = l kf with kf = 0.15. The dotted line corresponds to the
third-order Ginzburg–Landau approximation of the Eckhaus curve. (b) Solid lines show the
kinetic-energy time series of the l = 24, 29 axial Fourier modes, and their three first harmonics,
in the transition from the Eckhaus unstable TVF58 to TVF48 at Re0 = 100. The dashed line
corresponds to the l = 0 mode.

the outer cylinder stationary. For η = 0.5, circular Couette flow becomes linearly
unstable via a pitchfork-of-revolution bifurcation to axisymmetric Taylor vortex flow
(TVF) at Re0,c = 68.19, with critical axial wavenumber k0,c = 3.162. For Re0 > Re0,c

a continuous wave-vector band of TVF solutions bifurcates from circular Couette
flow. The width of this band at a particular Re0 is given by the neutral stability
curve of figure 2(a) (solid line). However, apart from the solution with k0,c at Re0,
the other solutions are born unstable and stabilize for higher Re0 upon crossing the
so-called Eckhaus curve. Figure 2(a) shows the Eckhaus curve as obtained by Riecke
& Paap (1986) assuming continuous axial wavenumber k (dashed curve), and its
classic Ginzburg–Landau estimate (dotted curve).

In the nonlinear computations the spectrum of axial wavenumbers is discrete
owing to the imposed periodic boundary conditions (2.7). Here, we have used a
small fundamental axial wavenumber kf = 0.15 which corresponds to a periodic
annular domain of axial wavelength Λ = 2π/kf = 41.89. With this choice, the most
unstable Fourier mode in our spectral expansion (2.6) is l = 21, corresponding to
an axial wavenumber k = l kf = 3.15, which is very close to the critical value kc.
Figure 3 shows contours of the Stokes streamfunction ψ and azimuthal vorticity ωθ

for nonlinear TVF at Re0 = 100 with k = 3.15. The wavelength of the resulting
periodic pattern is λ = 2π/k = 1.995, which corresponds to approximately square
counter-rotating Taylor cells. These cells are separated by inflow and outflow jets of
angular momentum, rvθ , emanating from the inner and outer cylinder, respectively.
When considering the full axial domain, z ∈ [0, Λ], the corresponding TVF in figure 3
spans Λ/(λ/2) = 2l = 42 cells, TVF42. For Re0 > Re0,c a discrete family of Taylor
vortex flows with different l bifurcate supercritically from circular Couette flow at
the open circles in figure 2(a). These TVF are unstable at onset as circular Couette
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Figure 3. Taylor vortex flow (TVF42) at Re0 = 100 with axial wavenumber k = 3.15. Contours
of the streamfunction ψ and azimuthal vorticity ωθ are shown in a meridional cross-section.
Vortex lines (rvθ contours) show the outflow and inflow jets separating the Taylor cells. Black
(grey) contours correspond to positive (negative) values, showing r ∈ [1, 2] and z ∈ [0, 2λ].

flow is already unstable to TVF42, and they become stable at secondary bifurcations
(Tuckerman & Barkley 1990). These secondary bifurcations are indicated by the
filled circles in figure 2(a) and coincide very well with the Eckhaus curves computed
by Riecke & Paap (1986) and the large-aspect-ratio experiments of Dominguez-
Lerma, Cannell & Ahlers (1986). Here, the Eckhaus instability curve was determined
using nonlinear computations. For example, starting at Re0 = 100 with a random
perturbation in the Fourier subspace spanned by mode l = 29, with corresponding
k = 4.35, the perturbation is evolved in time, resulting in steady TVF58. Then, a small
perturbation to the modes l = 21, . . . , 28 is introduced and their kinetic energy (2.8)
is monitored in time. In this case, TVF58 is Eckhaus unstable and evolves to TVF48,
i.e. with l = 24 and k = 3.6. This transition is illustrated in figure 2(b), showing the
kinetic energy of the axial Fourier modes l = 24, 29 and their first three harmonics.
The process is repeated with increasing Re0 in order to detect the point of bifurcation.
The use of a small fundamental axial wavenumber kf is essential for capturing the
nonlinear competition between modes as the Eckhaus curve is crossed.

The implementation of small kf � kc is very useful in modulated Taylor–Couette
flow, where the bifurcating modes (reversing and non-reversing TVF) are characterized
by distinct axial wavenumbers. In previous numerical studies with periodic boundary
conditions (Youd, Willis & Barenghi 2003, 2005), the evolution of the flows was
computed by fixing kf = kc. Although this latter approach allows one to investigate
the stability to non-axisymmetric perturbations (wavy vortex flows), it is unable to
consider interactions between flows with different axial wavenumbers (except for the
exceptional cases that they are multiples of kc).

2.2. Symmetries

The governing equations and boundary conditions are invariant to the Kz reflection
z → −z and to translations Ta along the z-axis. Owing to the imposed axial periodicity
of wavelength Λ, Ta generates an SO(2) symmetry group. Note that as Kz and Ta

do not commute (in fact KzTa = T−aKz), they together generate an O(2) symmetry
group which is not the direct product of SO(2) and Z2, but the semidirect product
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O(2) = SO(2) � Z2. The elements of Z2 are the identity and Kz. In the azimuthal
direction the governing equations are invariant to arbitrary rotations Rα which
generate another SO(2) symmetry group. Since both Ta and Kz commute with Rα ,
these operations generate the group G0 = SO(2) × O(2) of the spatial symmetries of
the system. The actions of these symmetries on the velocity field are

Tav(r, θ, z, t) = v(r, θ, z + a, t), (2.10)

Kzv(r, θ, z, t) = (vr, vθ , −vz)(r, θ, −z, t), (2.11)

Rαv(r, θ, z, t) = v(r, θ + α, z, t). (2.12)

The basic state (2.4) is invariant under G0. Moreover, when modulations about a
zero mean are considered, there is an additional spatio-temporal symmetry S, which
consists of a time evolution of half a modulation period followed by the reflection Kθ

on the meridional plane θ = 0 (acting as θ → −θ), whose action on the velocity is

S(v)(r, θ, z, t) = Kθ (v)(r, θ, z, t + T/2) = (vr, −vθ , vz)(r, −θ, z, t + T/2), (2.13)

where T = 2π/ω. If S were purely spatial, i.e. the reflection Kθ , then S and Rα would
generate the orthogonal group, O(2) = SO(2)�Z2, where the elements of Z2 would be
Kθ and the identity. Since S is a space–time symmetry, S and Rα generate a space–time
symmetry group isomorphic to O(2), which we term O(2)ST = SO(2) � ZST

2 , where
now the elements of Z2 are S and the identity. Therefore, the complete symmetry
group of the system modulated about a zero mean is G = O(2)ST × O(2) and the
basic state (2.4) is invariant under G. When the dynamics preserve the axisymmetry,
as is the case over large regions in parameter space, the rotations Rα do not play
any dynamic role (they act trivially on the solutions of the governing equations),
and in the axisymmetric subspace the symmetry group of the problem reduces to
G = ZST

2 × O(2).
Generally, the stability of T -periodic flows is determined by Floquet analysis,

considering their Poincaré map

x0 �−→ P(x0) = φ(t0 + T ; x0, t0), (2.14)

where φ(t0 + t; x0, t0) is the solution of the governing equations at time t with initial
conditions (x0, t0) in a neighbourhood of the periodic orbit. However, for systems with
Z2 spatio-temporal symmetry, the Poincaré map is the square of the half-period-flip
map

x0 �−→ H(x0) = Kθφ(t0 + T/2; x0, t0). (2.15)

In these cases, the eigenvalues of P are µP = µ2
H, where µH is the corresponding

eigenvalue of H. The action of S has important implications for the dynamics of
the bifurcated solutions which cannot be detected by studying the stability of P
alone. Marques et al. (2004) derived normal forms for codimension-one and -two
bifurcations in systems with G = ZST

2 × O(2), for both H and P.

3. Experimental apparatus and methods
3.1. Apparatus

The apparatus, shown schematically in figure 4, is a reassembly of the original
apparatus used by Takeuchi & Jankowski (1981) for the study of spiral Poiseuille
flow. It has been thoroughly overhauled with a new drive system, piping system,
and digital-image acquisition system. The through-flow feature, although not used in
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Figure 4. Schematic of the experimental apparatus. Overall height is approximately 4.5 m.

the present experiments, affects the boundary conditions at the ends of the annulus.
Unlike most other Taylor–Couette apparatus, the ends are not rigid. The ends of the
annulus open into the inlet and outlet manifolds and so the boundary conditions
at the ends are not clearly defined. Moreover, the inlet and outlet are not exactly
symmetrical and so the reflection symmetry about the annulus half-height is imperfect.

The inner cylinder is a stainless-steel pump shaft having a radius of ri = 25.40 ±
0.01 mm. Three precision borosilicate glass tube sections form the outer cylinder,
each with a constant inner radius of ro = 50.80 ± 0.05 mm and nominal length
700 mm. After alignment, the maximum run-out of the inner cylinder is 0.03 mm
at the midsection. The radius ratio is thus η = ri/ro = 0.500 ± 0.003 over one glass
section. The length of the outer cylinder is h = 2.93 m, which corresponds to an
aspect ratio of Γ = h/d = 115 ± 1. There are four bearings along the length of
the test section, each having six degrees of freedom for alignment. Including local
deviations near the bearings, the variation in gap width over the entire length is less
than 3.3%. The entire test section is environmentally sealed to reduce the effect of
convection from installation considerations such as the room heat pump.

The inner and outer cylinders are rotated independently by Industrial Devices
Corporation (IDC) P21V stepper motors. Each stepper motor connects to a
Bayside PX60-10 10:1 gearbox which connects via a timing belt to the inner
and outer cylinders. The total gear ratios of the inner and outer cylinders to
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each respective motor shaft are 200:7 and 240:7, respectively. The motors are
controlled by IDC SmartStep23 integrated controllers. MCG E9 optical rotary
encoders (8000 tics/revolution, post-quadrature) are connected to the motor shaft
and measure position. The inner cylinder is rotated using a discretized sine wave with
66 increments per cycle. The deviation from a pure sine wave is less than 0.2%.

The experimental fluid is 10 mm2 s−1 Dow Corning 200 Polydimethylsiloxane.
Type T thermocouples are used to monitor the temperature in the upper and lower
reservoirs and resistance temperature detector probes measure the temperature inside
and outside the enclosure. The thermocouples connect to a National Instruments
PCI-6035E data-acquisition (DAQ) card through a National Instruments SC-2345
signal conditioning unit, while the temperature probes connect to a Hanyoung NX-9
process controller with 4–20 mA output that is in turn connected to the DAQ card.

The difference in temperature between the two reservoirs is nominally less than
0.5 K. The variation inside the test-section enclosure is sinusoidal about a mean
within 0.1 K and tracks the cycling room temperature which varies within 0.4 K.
The fluid is cycled between runs and the temperatures are allowed to settle before
starting an experiment. As such, the mean temperature of the chamber is considered
to be the experimental temperature for viscosity determination. The temperature
dependence of the viscosity was measured to within 0.3% using an Ubbelohde
viscometer manufactured by Cannon Instrument Company.

Including all of the effects above, the total uncertainties in Rea and ω are 1.4%
and 2.2%, respectively.

3.2. Methods

Space–time images were obtained by observing an axial cross-section of the flow using
a Sony XC-ST50 Monochrome CCD video camera connected to a Linux Media Labs
LMLBT44 capture card. The size of a pixel is typically 0.04d with no measurable lens
distortion over the 640-pixel-wide frame. The technique, illustrated in figure 5, follows
that of Linek & Ahlers (1998) and numerous others. Reflective flakes (Flamenco
Superpearl 120C+, mica coated with TiO2) were illuminated by tungsten lighting to
visualize the vortex structure and measure the wavenumber. Detailed investigations
of how such flakes behave in a flow were performed by Savaş (1985) and Gauthier,
Gondret & Rabaud (1998).

A camera was oriented to observe the flow in the middle section (about 24d in
axial extent). At the start of an experiment, a series of background images were taken
with the inner cylinder at rest. The apparatus was then operated at fixed Rea and ω

while acquiring image data at a rate of between 1 and 3 images per second. Data at
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different parameter values were either acquired by a step change in the parameters,
or from rest.

The intensity distribution in each frame (figure 5a) is divided, pixel by pixel, by
the corresponding intensity distribution of the background image. A 12-pixel-wide
slice is taken from the centre of the resulting image (figure 5b) and averaged over its
width. These averaged slices are assembled into a time history and normalized. The
uncertainty in the normalized intensity due to sensor noise is approximately 1%.

In order to determine the axial wavenumber at a given time, the pixel intensities
of a particular slice are low-pass filtered and a peak-finding algorithm determines the
local minima below a threshold shown as a dashed line in figure 5(c). The minima
correspond to axial locations (at the outer cylinder) of the radial inflow jets separating
the Taylor cells. In the parameter regime investigated, the uncertainty in the (non-
dimensionalized) wavenumber is 0.1. Further technical details of the experimental
technique are presented in Belisle (2007).

4. Types A (reversing) and B (non-reversing) Taylor vortex flows
4.1. Floquet analysis of the modulated Couette flow

Codimension-one bifurcations are generically obtained when a single parameter is
varied. For modulated Couette flow (mC), the possible codimension-one bifurcations
correspond to Floquet multipliers of the Poincaré map µP = 1 or the complex-
conjugate pair µP = exp(±iθ). The case of µP = −1 is the period-doubling
bifurcation which is inhibited by the space–time Z2 symmetry S (Swift & Wiesenfeld
1984). Furthermore, the synchronous case µP = 1 comes in two flavours, one which
breaks the symmetry S and another which preserves it. These two cases are readily
distinguished by using the half-period-flip map H for the Floquet analysis, where
µP = µ2

H, and µH = +1 is the S-preserving synchronous bifurcation and µH = −1
is the S-breaking synchronous bifurcation. The quasi-periodic case µP = exp(±iθ),
while also being generic, has not been observed for modulated Taylor–Couette flow in
the parameter regimes studied so far. However, when the outer cylinder is modulated,
Lopez & Marques (2002) found some parameter regimes where the quasi-periodic
case leads to modulated spiral flows.

Figure 6 shows the results of the Floquet analysis of the basic state mC, using the
half-period-flip map H. The bifurcation curves Rea = Rea,c(ω) are shown in part (a)
of the figure. The solid curve is a pitchfork-of-revolution bifurcation corresponding
to µH = +1, where mode B bifurcates from mC, and the dashed curve is also
a pitchfork-of-revolution bifurcation corresponding to µH = −1, where mode A
bifurcates. These bifurcations break the continuous translational symmetry Ta , which
is replaced by a discrete translational symmetry T2π/kc

, where kc(ω) is the critical
wavenumber at the bifurcation (see figure 6b). The two modes remain T -periodic but
mode A breaks the S-symmetry and mode B preserves it.

The four regions in figure 6(a) are labelled with the states that exist in them (note
that mC exists everywhere but is only stable in the region where it is labelled).
Below both the A and B curves only the basic state mC exists and is stable. In the
region above both the A and B curves, modes A and B coexist. At low modulation
frequencies, mode A is the primary bifurcation (i.e. for a given ω, A bifurcates from
mC first as Rea is increased), and at large frequencies, mode B is primary. The point
(ω, Rea) = (3.936, 119.4) is a codimension-two point where the two bifurcations occur
simultaneously. Figure 7 shows neutral stability curves for modulation frequencies
ω = 2.5, 3.936 and 6. At ω = 2.5, the bifurcation to A is primary, occurring for a
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figure 7.
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ω = 3.936 and (c) ω = 6. The filled circles correspond to the discrete set of wavenumbers k
considered in the nonlinear computations such that k ∈ [0.75, 4.95].

wide range of wavenumbers. At ω = 3.936, both neutral stability curves have minima
at Rea,c = 119.4, giving rise to the codimension-two bifurcation point. At ω = 6 the
bifurcation to A is confined to a small range of wavenumbers and the bifurcation to
B is primary. These linear stability results have the same features as the nonlinear
computations of Youd et al. (2003) for η = 0.75. Note that the neutral stability
curves for A and B do not cross, so that at given (ω, Rea) the wavenumber of the
flow suffices to determine which state is realized in the nonlinear computations and
experiments. However, comparing figures 7(a) and 7(c), it is clear that by changing
either Rea or ω it is possible to obtain A and B with the same wavenumber.
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Figure 8. Type B (non-reversing) Taylor vortex flow at ω = 6.1 and Rea = 240 with
wavenumber kB = 3.4. Quadratically spaced contours of angular momentum (top row) and
azimuthal vorticity (bottom row) are shown in a meridional cross-section over a period
T = 2π/ω. Black (grey) contours correspond to positive (negative) values, showing r ∈ [1, 2]
and z ∈ [0, 4π/kB ]. The snapshots have been taken after transients have vanished. In particular,
a time shift of several periods t → t − NT has been applied. (Temporal behaviour is shown in
Movie 1 available with the online version of the paper).

4.2. Numerical characterization of the flows

The Taylor–Couette system with modulations about a zero mean is characterized
by two distinct phases, depending on the instantaneous value of Re(t) = Rea sinωt .
When Re(t) < Re0,c (the critical Reynolds number of steady Couette flow), the
motion of the cylinder is subcritical and therefore all the perturbations decay. For
Re(t) > Re0,c perturbations are amplified and vortices (Taylor cells) develop. Figure 8
shows contours of angular momentum rvθ (top row) and azimuthal vorticity ωθ

(bottom row) over a modulation period for state B at ω = 6.1 and Rea = 240 with
wavenumber kB = 3.4. At t = 0, which corresponds to Re(t) = 0, weak pairs of
Taylor cells remain from the previous modulation cycle. At t = T/8 the distribution
of angular momentum is almost uniform as the Taylor cells from the previous cycle
have almost completely decayed, but they soon re-develop and reach maximum
amplitude at about t = T/4 with a strong outflow jet of angular momentum erupting
from the inner-cylinder boundary layer at z = π/kB , and a weaker inflow jet from the
outer-cylinder boundary layer at z = 0. Subsequently, the cells decay until the rotation
of the inner cylinder becomes supercritical in the opposite direction and the Taylor
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Figure 9. Evolution over two periods of (a) the radial velocity and (b) the azimuthal velocity
components of the perturbation field (2.5) recorded at (r, θ, z) = ((ri + ro)/2, 0, π/kB ) (solid
lines) and (r, θ, z) = ((ri + ro)/2, 0, 0) (dashed lines) for state B in figure 8. Note that the time
axes have been normalized by the period T .

cells reappear at the same axial locations at t = 3T/4. This indicates that a time
evolution of T/2 leaves the azimuthal vorticity invariant, with the axial locations of
the inflow and outflow jets remaining unchanged. The time evolution of a half-period
corresponds to a change of sign in the angular momentum, as it does for the basic
state. It is therefore evident that the bifurcation to B preserves the spatio-temporal
symmetry S. This can also be seen in figure 9, showing the time series of the radial
and azimuthal perturbation velocities, ur and uθ , at (r, θ, z) = (1.5, 0, π/kB) (solid
lines) and (r, θ, z) = (1.5, 0, 0) (dashed lines). The radial velocity time series are T/2-
periodic, so that there is no reversal in the sense of circulation in the Taylor cells.
However, the azimuthal velocity is T -periodic, with symmetrically opposed maxima
and minima at t and t +T/2, i.e. uθ (r, θ, z, t) = −uθ (r, θ, z, t +T/2), and S is preserved.

The time evolution of state A over a modulation period is illustrated in figure 10,
showing contours of angular momentum and azimuthal vorticity. The behaviour is
similar to that of B, although in this case it is clear that a time evolution of T/2 does
not leave the azimuthal vorticity invariant; the locations of the inflow and outflow
jets are shifted by half an axial wavelength π/kA each half-period (compare snapshots
at t = T/4 and t = 3T/4, for example). Note that this does not correspond to a
reflection but to an axial shift of the pattern

Tπ/kAv(r, θ, z, t) = v(r, θ, z + π/kA, t). (4.1)

The change in sign of angular momentum together with this half-wavelength axial
shift indicates that the spatio-temporal symmetry S has been broken. Nevertheless, A
is invariant under a new Z2 spatio-temporal symmetry S ′, consisting of S composed
with the axial translation Tπ/kA . Its action on the velocity field is

S ′(v)(r, θ, z, t) = (vr, −vθ , vz)(r, −θ, z + π/kA, t + T/2). (4.2)

The replacement of S by S ′ in the bifurcation to A is manifested in the time series of the
radial and azimuthal perturbation components shown in figure 11. A time evolution of
half a period changes the sign of the radial velocity, illustrating the exchange between
outflow and inflow boundaries as a result of the axial shift. If this time evolution is
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Figure 10. Type A (reversing) Taylor vortex flow at ω = 1 and Rea = 240 with wavenumber
kA = 3.0. Quadratically spaced contours of angular momentum (top row) and azimuthal
vorticity (bottom row) are shown in a meridional cross-section over a period T . Black (grey)
contours correspond to positive (negative) values, showing r ∈ [1, 2] and z ∈ [0, 4π/kA].
(Temporal behaviour is shown in Movie 2 available with the online version of the paper).

composed with Tπ/kA , which corresponds to swapping from solid to dashed line or
vice-versa, then the radial velocity is unchanged. The azimuthal component is only
invariant after further applying the reflection Kθ . These symmetry considerations
fully agree with the results from equivariant normal-form theory described in the
Appendix.

4.3. Experimental characterization of the flows

The critical Rea,c from the Floquet analysis corresponds to the Rea at which the net
growth of the most dangerous perturbation over a period is zero. For Rea � Rea,c,
the fraction of the period during which the motion of the cylinder is subcritical
(Re(t) = Rea sinωt < Re0,c) is large, and the vortices decay to energy levels which
are limited by the level of background noise (Hall 1983; Barenghi & Jones 1989).
For larger Rea , the signal-to-noise ratio is increased, and so the experimental results
reported in this paper have been performed at Rea = 240, well beyond onset at
Rea,c ≈ 110. At Rea = 240, the motion of the cylinder is subcritical for only
18.3% of the period, giving an acceptable signal-to-noise ratio which results in clean
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Figure 11. Evolution over two periods of (a) the radial velocity and (b) the azimuthal velocity
components of the perturbation field (2.5) recorded at (r, θ, z) = ((ri + ro)/2, 0, π/kA) (solid
lines) and (r, θ, z) = ((ri + ro)/2, 0, 0) (dashed lines) for state A in figure 10.

synchronous secondary flows. The experimental characterizations at Rea = 240 of
A at ω = 1.0 and B at ω = 6.1 are shown as space–time diagrams in figures 12(a)
and 12(b). A and B can be clearly distinguished by the behaviour of the jets separating
the Taylor cells. In figure 12(a) the jets of A shift half a wavelength every half-period,
and in figure 12(b) the jets of B do not shift. The corresponding wavenumbers for
these particular experimental runs are kA = 3.0 and kB = 3.4, consistent with the
nonlinear computations.

Youd et al. (2003) noted that the most striking feature of A is the exponential growth
and decay that the vortices experience every half-period. This behaviour is manifested
in the computed kinetic-energy time series of A at Rea = 240 and ω = 1 shown in
figure 12(c). At this low frequency, the response is quasi-steady to the continuous but
slow change in Re(t). At t = 0, corresponding to Re(t) = 0, the vortices are decaying
exponentially and reach a minimum of kinetic-energy shortly after the motion of the
cylinder becomes supercritical (Re(t) = Re0,c). The instantaneous Re(t) is shown in
figure 12(e) (and in figure 12(f ) for the ω = 6.1 case) as a solid line together with
±Re0,c (dashed lines) so as to clearly identify the phases of the cycle during which the
cylinder motion is super- and subcritical. The decay of the vortices can also be seen in
the experimental space–time diagram of figure 12(a), where the vortices are observed
to fade away (the intensity tends to an axially uniform shade of grey). Subsequently,
the vortices grow exponentially until the flow saturates nonlinearly at t/T = 0.133
and algebraic growth follows. The algebraic growth continues to t/T = 0.25, when the
maximum amplitude of the modulations Re(t) = 240 is achieved, and it is followed
by algebraic decay as the cylinder slows down. In the experiments, this long phase
of algebraic behaviour is distinguished by a greater contrast in the reflected light
across the vortices. When the rotation of the cylinder again becomes subcritical, the
vortices decay exponentially. Owing to the spatio-temporal symmetry S ′, this sequence
is repeated every half-period, i.e. the kinetic-energy time series is T/2 periodic.

The behaviour of B at a higher frequency ω = 6.1 is qualitatively different. In this
case, the flow does not have time to adjust quasi-steadily to the rapidly changing
Re(t). This results in a delay of the response as can be seen in the kinetic-energy
time series of figure 12(d), and also in the space–time diagram of figure 12(b). In
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Figure 12. Experimental space–time diagrams of the time evolution at Rea = 240 of (a) state
A at ω = 1 with kA = 3.0 and (b) state B at ω = 6.1 with kB = 3.4; the corresponding
computed kinetic energies of the perturbation field u are shown in (c) and (d), and the
corresponding instantaneous Reynolds numbers Re(t) = Rea sin ωt (solid curve) are given in
(e) and (f ) which also include Re0,c = ±68.19 (dashed lines).

particular, the flow saturates nonlinearly at t/T = 0.215, in comparison to A at
ω = 1 which saturates at t/T = 0.133. Although the flow is subcritical for the same
fraction of the period in the two cases, since the period is six times shorter in viscous
time units for B at ω = 6.1, and the growth rates for A and B in viscous time units
are comparable (e−22.9t and e−23.4t , respectively), the exponential decay of A at ω = 1
during this fraction of time leads to vortices with minimum energy of about six orders
of magnitude smaller than for B at ω = 6.1.

4.4. Wavenumber selection of the flows

The neutral stability curves shown in figure 7 indicate that at Rea = 240 solutions with
a wide range of axial wavenumbers k can be selected. The stability of these flows is
limited by the Eckhaus bifurcation curves. In the experiments, the axial wavenumber
that is selected depends on perturbations and initial conditions that are not completely
controllable and cannot be fully characterized. Repeated experimental runs at the
same point in parameter space (Rea , ω) lead to states with different k well within the
Eckhaus-stable band. Similar multiplicity of states in classical Taylor–Couette flow is
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Figure 13. Experimentally observed axial wavenumbers k of A (
) and B (�) in several
experimental runs at Rea = 240. The solid lines correspond to the Eckhaus curves from the
nonlinear computations.

well-known (Coles 1965). Figure 13 shows the axial wavenumbers of A (diamonds)
and B (squares) observed in several experimental runs at Rea = 240 and various ω.
(Results in the interval 1 < ω < 3 are presented in §5 as they correspond to the
competition region.) After transients have decayed, the Taylor cells are of uniform
wavelength and no defects are observed. All the observed k are inside the Eckhaus
bands as determined by nonlinear computations, shown in solid lines in figure 13.

5. Mode competition: bifurcation scenario
We have numerically investigated the competition between A and B flow states

in a wide region of parameter space around the codimension-two point where they
bifurcate simultaneously, (ω, Rea,c) = (3.936, 119.4). The critical axial wavenumbers
for A and B from Floquet analysis are kA

c = 2.71 and kB
c = 3.82. Let us assume

for now that only one A and one B, with fixed incommensurate kA
c and kB

c , exist in
the neighbourhood of this codimension-two point. This classical simplification allows
one to interpret the bifurcation scenario in terms of standard equivariant bifurcation
theory while preserving the essentials of the competition dynamics. The effects of
the presence of two families of flows A and B, given by the Eckhaus bands, will
be addressed in the next paragraph. Figure 14 shows the bifurcation diagram of the
competition between A and B in a wide region of parameter space. For Rea and ω in
region 1 the basic state mC is the only flow that exists and it is stable. Crossing into
region 2, mC becomes unstable and A emerges as a stable state via a synchronous
symmetry-breaking bifurcation. Upon crossing into region 3, B emerges from another
synchronous bifurcation from mC, but it is unstable and only stabilizes in region 4
where an unstable mixed-mode AB is born. In region 4, A and B coexist and are both
stable. Depending on initial conditions, either of them may be obtained. The situation
is analogous when starting from region 1 and crossing into regions 6 and 5 to reach
region 4. As all the bifurcations are supercritical, these paths in parameter space can
be reversed and the same results hold. The detailed analysis of this bifurcation is
presented in the Appendix in terms of equivariant normal-form theory. Figure 15
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Figure 15. Schematic of the phase portraits of the mode competition dynamics in the six
regions delimited by the bifurcation curves in figure 14. Open (closed) circles are unstable
(stable) fixed points of the Poincaré map P.

shows a schematic of the phase portraits in the six regions of parameter space,
indicating the stability of the flows, summarizing the results in the Appendix.

Note that at any point in parameter space with Rea > Rea,c there exist not a single
A or a single B, but two families of these flows. Therefore, on performing nonlinear
computations to determine the bifurcation curves in figure 14, it is necessary to
consider A and B with different axial wavenumbers (all of them multiples of the
small fundamental kf = 0.15). Their stability is determined as explained in §2.1. Say
we start a simulation with ω = 3.2 and Rea = 140 and obtain B50 with wavenumber
kB = 3.75, corresponding to 50 Taylor cells (l = 25). Upon decreasing the Reynolds
number to Rea = 138, we cross from region 4 to region 3, B50 becomes unstable and
the system evolves to A38 (with kA = 2.85). However, at this Rea and ω, B52 (with
kB = 3.9) is still stable and is only destabilized when Rea is further reduced to 137.
Likewise, for each pair (A2l , B2l′) there exists a set of bifurcation curves. Region 4 in
figure 14 is defined as all points in parameter space where at least a stable A and a
stable B coexist simultaneously. The boundaries of region 4 consist of segments from
the bifurcation curves at which various A and B lose stability. Note that in region 4,
there exists not a single unstable mixed mode AB, but a family of such modes.
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Figure 16. Space-time diagram showing an azimuthal vorticity colour-map at (r, θ ) = (ro, 0)
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corresponds to positive (negative) values. The initial condition is A36 at ω = 4 and Rea = 140.
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Figure 17. As figure 16, but the initial condition is B50 at ω = 3.2 and Rea = 140. At t = 0
the frequency is decreased to ω = 3.0 and the system evolves to A38.
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A typical example of the nonlinear dynamics of the transition from A to B when
crossing from region 4 to region 5 is shown in the space–time diagram of figure 16.
In the plot, we have arbitrarily set t = 0; however by this time the flow had evolved
for many periods until a stable A36 was obtained at Rea = 140 and ω = 4 (region 4).
Then, at t = 0 a small perturbation (with energy several orders of magnitude lower
than that of the flow) was introduced and the frequency was raised to ω = 4.2,
thus entering region 5 where A is unstable. After a transient (of about 10 periods)
during which A and B compete, the flow settles to B48. Before the transition, the half-
wavelength axial shifts of A36 every half-period are evident. Following the transition
to B48, the flow no longer shifts axially and has a larger wavenumber. Figure 17
shows the transition from B to A when crossing from region 4 to region 3. The initial
state is B50 at Rea = 140 and ω = 3.2, and upon decreasing the frequency to ω = 3.0,
the flow evolves to A38.

5.1. Experimental dynamics of the competition at Rea = 240

We have conducted experiments at Rea = 240 to verify the bifurcation scenario and
identify the regions in parameter space predicted by the nonlinear computations.
In the low-frequency regime, ω � 1, corresponding to region 3 in figure 14, the
only observed flow is A. For frequencies ω � 3, corresponding to region 5, only B
is observed. These flows are characterized by a well-defined time-independent axial
wavenumber k. The observed values of k are given in figure 13.

The experimental procedure to detect the boundaries of the coexistence region 4 is
as follows. The apparatus is operated at ω � 6 in region 5 and far from region 4 as
determined by the nonlinear computations, which at Rea = 240 spans ω ∈ (1.53, 2.20).
After transients have decayed, a spatially regular B state is obtained. Then, the
frequency is decreased to say ω = 5. There is a rapid initial adjustment via vortex
mergers or splits (defects in the pattern which appear at random axial locations)
on a time scale of about 2π/ω (on the order of d2/ν for the range of frequencies
investigated). This is followed by a slower adjustment of the wavelength on the viscous
time scale associated with the distance between endwalls (Γ d2/ν). The frequency is
subsequently reduced further and different B are obtained at various ω. Following
each of these changes in ω, we observe the same type of rapid adjustment via defects
followed by the gradual relaxation. However, close to region 4 (at about ω ∼ 3) the
defects do not vanish after a period but are persistent in time. Figure 18 shows a
typical space–time diagram of an experimental run in this parameter regime, with
Rea = 240 and ω = 2. The flow does not settle on a particular axial wavenumber
and there are abrupt appearances of defects over the whole experimental run (which
lasted 36 periods, corresponding to about 120 viscous times). The defects are evident
when the flow saturates nonlinearly, and when Re(t) peaks at about |Re(t)| = 240 the
cells are more spatially uniform. The defects appear at random axial locations each
half-period and the dominant axial wavenumber is apparently randomly selected in
time with values k ∈ [2.9, 4.0], showing no clear trend (a few close-ups of the images
in figure 18 are presented in figure 19 showing typical defects). The flow cannot be
regarded as either A or B; the jets separating the vortices shift by irregular amounts
in space and time. This type of behaviour is observed following decreases in ω, until
we reach ω = 1. Following a decrease to ω = 1, the defects quickly disappear within
about one period, and the Taylor cells adjust slowly to a uniform axial wavenumber
k. At this ω, the jets shift by half a wavelength every half-period, corresponding to A.
This whole scenario is reversed with increasing ω, i.e. we did not detect any hysteresis
with varying ω.
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Figure 19. Close-ups of the images in figure 18 showing typical defects.

6. Discussion and conclusions
Nonlinear dynamics of the time-modulated Taylor–Couette system has been

investigated experimentally and numerically by solving the unsteady three-



402 M. Avila, M. J. Belisle, J. M. Lopez, F. Marques and W. S. Saric

dimensional Navier–Stokes equations. The aspect ratio of the experimental apparatus
is Γ = 115, whereas in the nonlinear computations a long periodic annulus
of wavelength Λ = 41.89 has been considered. The study focused on temporal
modulations about a zero mean. In this case, the basic state is characterized by the
presence of a Z2 spatio-temporal symmetry, S, in addition to the spatial symmetries
of the classical Taylor–Couette system.

The onset of instability has been determined by Floquet analysis of the basic state,
which shows that two distinct Taylor vortex flows A (reversing) and B (non-reversing)
are born at synchronous symmetry-breaking bifurcations of the modulated Couette
flow. This result resolves the discrepancies between previous Floquet analyses for finite
gaps (Carmi & Tustaniwskyj 1981; Barenghi & Jones 1989) and narrow gaps (Riley
& Laurence 1976). Moreover, experimental evidence of the existence of flows A and
B has been provided for the first time. The dynamical behaviour of A and B and the
observed axial wavenumbers are in good agreement with the predicted values from
Floquet analysis and nonlinear computations. The stability of the basic state has been
investigated using the half-period-flip map H instead of the Poincaré map P = H2.
This approach sheds light on the nature of the symmetry-breaking bifurcations to
A and B, while also having the practical advantage of halving the computational
time. The bifurcation to B preserves the spatio-temporal symmetry S, whereas the
bifurcation to A breaks it and a new spatio-temporal symmetry S ′ emerges, consisting
of S composed with an axial shift of half a wavelength. Flows with precisely the same
symmetries as A and B arise in other systems, such as the periodically driven cavity
flow (Marques et al. 2004) and cylinder wake flows (Barkley & Henderson 1996), via
analogous bifurcations in the transition from two-dimensional to three-dimensional
flow (Blackburn, Marques & Lopez 2005). However, in modulated Couette flow,
the transition is from one-dimensional to two-dimensional flow, highlighting that
the symmetry group of the system, and in particular of the flow from which the
bifurcations occur, determines the spatio-temporal characteristics of the bifurcated
flows regardless of the specifics of the problem. Therefore, a careful consideration of
the symmetries of the system not only provides the key to understanding the nature of
the two bifurcated flows, but furnishes the setting to compare systems with inherently
different physical instability mechanisms.

In previous studies, direct numerical simulation had been focused on investigating
the codimension-one bifurcations leading to the two states with distinct spatio-
temporal symmetries. The flow in the wake of a cylinder is governed by a single
parameter, the Reynolds number Re, so that a study of the mode competition
between A and B is impractical (two parameter variations are required to explore the
competition dynamics organized by the codimension-two point where both modes
bifurcate simultaneously). State A bifurcates first at lower Reynolds number, so a pure
state B is never observed in the cylinder wake experiments and can only be obtained
in the computations by prescribing the wavenumber. The transition from A to B is
found to be gradual in experiments (Williamson 1996) and to some extent in nonlinear
computations (Henderson 1997). Barkley, Tuckerman & Golubitsky (2000) proposed a
system of two coupled amplitude equations based on the assumption of the existence of
a codimension-two point where A and B bifurcate simultaneously; the experimentally
observed transition was described as a one-dimensional path (parameterized with
Re) in a two-parameter model. In modulated Taylor–Couette flow, the study of the
competition between the analogous states A and B is more straight-forward as the
two parameters, Rea and ω, can be varied. Youd et al. (2003) obtained A and B with
nonlinear computations for the first time. In a subsequent study, Youd et al. (2005)
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also investigated the secondary transition to three-dimensional flows and showed that
non-reversing spiral flows occur. However, their approach, in which they computed a
single mode with a prescribed wavelength, was unable to study mode competition and
pattern selection. At about the same time, Youd & Barenghi (2005) also considered
the problem in a finite annulus with stationary rigid endwalls and relatively short
aspect ratios, and found that both states A and B continue to exist. Although mode
competition could have been studied along the lines presented here, they did not
perform such an analysis and only considered two modulation frequencies, ω = 3
and ω = 7. The effects of rigid endwalls and finite aspect ratios on the competition
between states A and B remains an open question.

In this paper we have numerically and experimentally investigated the competition
between A and B in the two-dimensional parameter space (ω, Rea). In the nonlinear
computations, A and B coexist and the two are stable in a narrow region of parameter
space where a mixed mode AB also exists but is unstable. In fact, in this region there
are families of A and B and mixed modes. In the experiments neither A nor B has
been observed in the coexistence region. Instead, we have found that noise sustains
flows with irregular time-dependent axial wavenumber. Outside this region, for lower
frequency only A is observed, and for higher frequency only B is observed, in good
agreement with the numerical simulations and the Floquet stability analysis. This
finding poses a fundamental question of interest in mode competition and pattern
formation. In particular it is noteworthy that the wavenumber selection fails only
in the mid-frequency coexistence region. For lower frequencies, where noise effects
are expected to be more pronounced due to the long time that perturbations have
to grow and decay, regular spatially and temporally periodic flows were in fact
observed. It is thus of interest to determine the nature of the flows observed in
the coexistence region, and in particular to determine if it is noise sustaining a
mixed mode generated by a combination of A and B with a wide range of axial
wavenumbers.
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Statistics, Arizona State University, whose kind hospitality is warmly appreciated.
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Appendix. Normal-form analysis of the double pitchfork-of-revolution
bifurcation

The dynamics of the problem in the neighbourhood the codimension-two point,
where the periodic base state bifurcates simultaneously to modes A and B, is
axisymmetric. The symmetry group of the problem reduces to G = ZST

2 × O(2),
where Z2 is generated by the space–time symmetry S. The possible bifurcations
and corresponding normal forms in systems with this symmetry were obtained in
Marques et al. (2004), where the codimension-one bifurcations were analysed in
detail. Here, we start with the normal form and analyse the dynamics associated with
the codimension-two bifurcation. Since mode A breaks the space–time symmetry S,
and mode B preserves it, the normal form for the half-period-flip map H, up to third
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order, is

H :

{
A �→ A(−1 + µ + a|A|2 + b|B|2)
B �→ B(+1 + ν + c|A|2 + d|B|2),

(A.1)

where A and B are the complex amplitudes corresponding to the bifurcating modes
A and B respectively. Since all the coefficients (µ, ν, a, b, c, d) are real, the dynamics
of the phases of A and B are trivial; writing A and B in terms of their moduli and
phases, A = r1e

iφ1 and B = r2e
iφ2 , we obtain

H :

{
r1 �→ r1

(
−1 + µ + ar2

1 + br2
2

)
r2 �→ r2

(
+1 + ν + cr2

1 + dr2
2

)
,

{
φ1 �→ φ1

φ2 �→ φ2,
(A.2)

and the phases φ1 and φ2 remain constant. Assuming that a and d are not zero (they
are negative in our problem), re-scaling r1 and r2 gives

H :

{
r1 �→ r1

(
−1 + µ − r2

1 − ζ r2
2

)
r2 �→ r2

(
+1 + ν − δr2

1 − r2
2

)
,

(A.3)

with two unfolding parameters µ and ν, and two constants ζ and δ whose exact values
depend on the problem considered. In the neighbourhood of the codimension-two
point the two bifurcation parameters µ and ν are linearly related to Rea and ω by

µ = Rea − 10.56 ω − 77.86,

ν = Rea + 0.8992 ω − 122.96,

}
(A.4)

and the two constants are ζ = 1.9670 and δ = 1.9022. These values have been
obtained from the numerical data in figure 14. The action of Gs = O(2) × Z2 leaves
the amplitudes r1 and r2 invariant, but acts non-trivially on the phases (Marques et al.
2004):

Ta(φ1, φ2) = (φ1 + k1a, φ2 + k2a),

Kz(φ1, φ2) = (−φ1, −φ2),

H (φ1, φ2) = (φ1 + π, φ2),

⎫⎪⎬
⎪⎭ (A.5)

where k1 and k2 are the critical axial wavenumbers of modes A and B respectively.
These actions are easy to obtain by considering that the bifurcating eigenvectors are
of the form Aeikzv(r, t) because the base state mC is independent of (θ, z). We assume
that k1/k2 is irrational (non-resonant case), i.e. the critical wavenumbers of the two
modes are not in a rational ratio, as is the case in our problem.

In order to describe the dynamics associated with the normal form (A.3), it is
convenient to obtain the fixed points of the Poincaré map P = H2. Up to third
order,

P :

{
r1 �→ r1

(
1 + 2µ − 2r2

1 − 2ζ r2
2

)
r2 �→ r2

(
1 + 2ν − 2δr2

1 − 2r2
2

)
.

(A.6)

The Poincaré map may have up to four different fixed points, depending on the values
of ζ and δ, and on the region in parameter space (µ, ν) considered. The fixed points
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in phase space (r1, r2) are

mC = (0, 0), A = (
√

µ, 0), B = (0,
√

ν ), AB =
(√

ζν − µ

ζδ − 1
,

√
δµ − ν

ζδ − 1

)
,

(A.7)

and they have been labelled according to the solutions of the present problem.
The modulus dynamics (A.6) are identical to the modulus dynamics of the double-

Hopf bifurcation (dH), and the results in Kuznetsov (2004) apply to the present case.
In particular, the bifurcation scenario of figure 14 is the analogue of type I of the
‘simple’ case of dH, for which ζ > 0, δ > 0 and θδ > 1 (Kuznetsov 2004). However,
the interpretation of the dynamics associated with the fixed points (A.7) changes.
The Hopf bifurcations in dB become pitchfork-of-revolution bifurcations (since the
phases remain constant). A and B are limit cycles in dH, and here they are fixed
points; and AB, a quasi-periodic solution in dH, is also a fixed point here. As the
phase dynamics here refers to translations in z while in the dH it is associated with
time, A and B are periodic solutions in z, while AB is quasi-periodic in space. Finally,
in dH one is dealing with an ODE system, so the curves in the phase portraits are
orbits in (r1, r2) phase space; here we are dealing with maps (P and H) and so the
curves in the phase portraits are invariant manifolds, containing an infinite number
of discrete orbits.
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