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ABSTRACT

Experiments are performed in Taylor-Couette flow where the inner-cylinder angular velocity is modulated

in time about zero mean. �eory and nonlinear computations have previously found this case to be

characterized by two competing modes. Both are axisymmetric and synchronous with the modulation,

but have different spatio-temporal symmetries and axial wavenumbers.

�e results of flow-visualization using reflective flakes provide the first experimental evidence and

characterization of both modes. Excellent verification of the dynamical behavior for forcing Reynolds

amplitudes greater than 200 is demonstrated. A region of competition is found coincident with an

expected coexistence region where both modes are stable; however, the experimental flow in this region is

unsteady with time-varying wavenumber.

Experimental noise limits the breadth of the results and only Reynolds amplitude of 240 is considered

in detail. Lower amplitudes are also considered, but noise effects dominate as the amplitude approaches

the critical around 110.
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CHAPTER 1

INTRODUCTION

Situations involving transition from one state to another are ubiquitous in nature. In fluid mechanics,

the transition that has attracted the most interest and study is that of a flow from a laminar state to a

turbulent state. �is laminar–turbulent transition is a complex and challenging problems and remains one

of the great unsolved problems in fluid mechanics. It is of great utility to study simpler problems where a

progression of instabilities leads to flow states that preserve the dynamics of interest. �is progression is

often of increasing spatial and temporal complexity.

One such problem is the study of flow in the annulus of two concentric cylinders. �is class of

problems is known as Taylor-Couette flow, after the two pioneering researchers in the field, Taylor (1923)

and Couette (1890). Although the problem has relatively simple boundary conditions, a myriad of stable

states are possible in the diverse parameter space.

In the simplest case, the inner cylinder is rotated steadily about its longitudinal axis. �e basic

flow, Circular Couette () flow, is stable and symmetric independent of both the axial and azimuthal

directions (in the idealized limit of an infinitely long annulus).

Rotating the inner cylinder is just one of many possible parameters. Among the other parameters that

have attracted significant interest include rotating the outer cylinder introducing an axial flow, applying a

radial temperature gradient, and adding spatial variation to the system (e.g. a ramp or spherical geometry).

In addition, any of these parameters can be modulated or varied in time. �is thesis considers experiments

in the relatively simple case where the rotation of the inner cylinder is modulated in time about a zero

mean—like the agitator in a washing machine.

1.1. Stability of steady Taylor-Couette flow

When the inner cylinder is rotated at constant angular speed Ωi with the outer cylinder at rest (Ωo = 0),

the  flow is stable as long as the rotation speed is below Ω0

c . �is was the problem studied by Couette

(1890) as a means of measuring viscosity by making measurements of torque exerted by the fluid on the

cylinders.

Following from Chandrasekhar (1961), the most general form of the fluid angular velocity Ω(r) is,

for an infinite cylinder,

Ω(r) = A +
B
r2

. (1.1)
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At the boundaries, ri and ro,the no-slip condition requires

Ωi = A +
B
r2

i

Ωo = A +
B
r2

o
= 0.

Solving for A and B gives

A = −Ωi
η2

1− η2

B = Ωi
r2

i
1− η2

where η = ri/ro is the radius ratio.

�is profile is shown below in figure 1.1. is

θ , Ωi 

V(r)

h

d

ro

ri
rz

F 1.1. Problem geometry in steady case, showing velocity profile of subcritical flow.

Since the fluid at the inner cylinder is in motion while the fluid at the outer cylinder is at rest, a radial

pressure gradient is created that increases monotonically outwards. �e force created by the pressure

gradient is opposed by the spinning of the fluid, which creates a centrifugal force pushing outwards. As

long as the centrifugal force is less than the pressure force, then the Couette flow is stable. �is condition,
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in the absence of viscosity, is given by Rayleigh’s criterion,

d
dr

(r2Ω) > 0, (1.2)

which effectively says that a stratification of angular momentum (r2Ω2
) about an axis is stable if and

only if it increases monotonically outward (Lord Rayleigh 1920). �e result of this condition is that,

for Couette flow to be stable, the outer cylinder must rotate at a speed greater than η2
-times that of the

inner cylinder and in the same sense, i.e. ,

µ =
Ωo

Ωi
> η2.

Clearly, in the case where the outer cylinder is fixed and in the absence of viscosity, the flow is unstable

for any rotation of the inner cylinder.

Couette (1890) noted a sharp increase in torque when the cylinder is rotated faster than a certain

rate, but did not offer an explanation as to the cause. Many years later, Taylor (1923) studied the viscous

stability problem both theoretically and experimentally, determining both the criterion for stability and

the dynamic behavior of the instability. He found that above a critical rotation rate the axial symmetry

of the flow is broken and an axially periodic pattern emerges. Although he considered combinations of

inner cylinder and outer cylinder rotations, only the case where the inner cylinder rotates while the outer

cylinder is fixed is considered further.

In the presence of viscosity, (1.2) is a necessary but not sufficient condition for flow stability. For

viscous fluids, Taylor (1923) determined the criterion for stability in terms of the Taylor number. When

the outer cylinder is fixed, the Taylor number is proportional to the square of the Reynold’s number,

Re =
Ωidri

ν
.

For simplicity, the latter is used. It suffices to say that, for η = 0.5, the critical Reynolds number is

Re0

c = 68.19, where the superscript 0 indicates steady rotation and the subscript c indicates criticality in

the limit of infinitely long cylinders.

For Re0 < Re0

c , the only possible solution is the  basic state. At Re0

c , the axial translation symmetry
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(a) (b)

F 1.2. (a) Streamlines and (b) angular moment countours of Taylor-Vortex flow just above Re0

c .

is broken and  becomes unstable to a periodic pattern of wavelength λc, which is nondimensionalized

as the wavenumber kc = 2π/λc. For η = 0.5, the critical wavenumber is kc = 3.12, which corresponds

to vortices that have an approximately square crossection. �is new stable state, called Taylor-vortex

() flow consists of pairs of counter-rotating, toroidal vortices. Streamlines of the pattern and angular

momentum contours are shown in figure 1.2.

As the Reynolds number is increased further, the basic state  is unstable to all periodic patterns

whose wavenumber satisfies (k− kc)2 < Re0/Re0

c − 1, shown by the solid line in figure 1.3 (adapted

from Tuckerman & Barkley 1990). Eckhaus (1965) showed that these periodic solutions are also unstable

unless their wavenumber falls in the range (k− kc)2 < (Re0/Re0

c − 1)/3, shown as the dashed line

in the figure. �is is known as the third-order theoretical Eckhaus band; the actual Eckhaus band is

generally more restrictive in fully nonlinear problems like the Taylor-Couette system.

�eoretically, the stable wavenumbers are continuous and bounded by the Eckhaus limit. In the

typical Taylor-Couette experiment, the ends are rigid plates or ramps that quantize the stable wavenumbers,

allowing only a discrete set of values. �is happens because there needs to be an integer number of vortices

in the apparatus. �is is not the case when the top boundary is the less common free-slip boundary,

which supports the continuous Eckhaus band (Tuckerman & Barkley 1990).

�e effect of the Eckhaus instability can be clearly observed by forcing the system into an unstable

wavenumber. For example, one could obtain a stable flow at Re > Rec with a particular kp 6= kc. If Re

is decreased until kp lies outside the stable Eckhaus band, vortex pairs will be created or destroyed in

order to adjust the flow to a stable wavenumber. Eventually, an infinite system with a stable flow will
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kc

Re0

Eckhausneutral
stability

  0

c

F 1.3. Wave number dependence on Re and the Eckhaus instability.

settle on a uniform wavenumber. A notable exception to resolving the instability by vortex creation or

destruction is that under certain boundary conditions (such as the spatially-ramped flow of Ning, Ahlers

& Cannell 1990) it is possible for the boundaries to supply a traveling vortex wave that stabilizes an

Eckhaus-unstable wavenumber. Since the vortex structure is a repeating pattern, the traveling wave has a

characteristic frequency f .

Transitions to other stable states occur at higher reynolds number, but are not considered here. Coles

(1965) presents experimental results that document a number of the myriad states.

1.2. Modulated Taylor-Couette flow

In the regime of modulated Taylor-Couette flow considered, the inner-cylinder angular frequency is

harmonically modulated in time. �e experiments of Donnelly (1964) instigated interest in modulated

Taylor-Couette flows. He focused on the case were the rotation is modulated about a nonzero mean with

an amplitude that is small compared to the mean rotation. Donnelly found that the onset of the primary

bifurcation to Taylor-vortex flow can be delayed to high rotation rates in this manner, i.e. modulation

stabilizes the flow.

Soon after Donnelly published his results, theory showed that time-modulation does in fact destablize

the flow. �is fundamental discrepency between theory and experiments is resolved by reconsidering the

criterion for stability, as discussed by Donnelly (1990). In the 1964 experiments, Donnelly ramped the

velocity of the inner cylinder in time. He observed what he considered to be a secondary, low amplitude
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flow just before Re0

c followed by a switch to Landau-law dependence of ur on the mean rotation angular

velocity. He considered the latter flow to signal the onset of the instability, but it is more appropriate to

consider the first departure from cc to indicate the onset.

After establishing that modulation does in fact destablize the flow, new disagreement between theory

and experiments arose with respect to the magnitude of the destabilization and the existence of two stable

modes in the zero-mean case came into question.

Weak destabilization was found by Hall (1975), who performed a perturbation analysis that found a

small degree of destabilization in limit where the gap between the cylinders is very small in comparison

to the radius of the outer cylinder, i.e. η → 1. Riley & Laurence (1976) confirmed these results using

Floquet theory. In the zero-mean case, they identified the existence of two stable supercritical modes,

one that occurs at relatively lower frequency and another that occurs at higher frequency. Using a

Galerkin expansion, they characterized the supercritical behavior of both modes and identified them as

synchronous, having a period equal to the that of the forcing. In addition, unpublished experiments by

Ahlers (reported by Barenghi & Jones 1989) supported the weak destabilization found by these theories.

Favoring strong destablization were experimental results by Thompson (1968) and by Walsh &

Donnelly (1988). Carmi & Tustaniwskyj (1981) extended theoretical consideration of the problem to

finite-gap geometry using Floquet analysis and characterized the flow field. At higher frequencies, they

achieved qualitative agreement with the stability measurements of �ompson, finding a large degree of

destabilization. �ey did not detect the existence of two stable modes—finding only the mode that Riley

& Laurence (1976) identified at higher frequency. �ey attributed the discrepancy in part to inclusion of

specific terms in their approximation that were considered negligible by Riley & Laurence.

Using an amplitude model developed by Hall (1983), Barenghi & Jones computed additional results,

addressing the myriad issues of disagreement in the previous results, and introduced basic consideration of

noise effects. First, they determined that the time steps taken in the low-frequency computations of Carmi

& Tustaniwskyj (1981) were too large to accurately reproduce the exponential decay of the behavior

when Re < Re0

c . Second, they compared their results with experiments including those of Donnelly

(1964) and �ompson (1968) and Ahlers’ unpublished results. By considering the sources of error in

the various experiments and the problems in the computations of Carmi & Tustaniwskyj (1981), they

concluded that the large degree of destabilization observed in some experiments is due to experimental
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imperfections. Barenghi & Jones did not find existence of the two competing modes, however. �ey

considered their results on a log scale, which didn’t include enough points in the low-frequency range to

establish a discontinuity where the mode that is first to bifurcate changes.

1.2.1. Stable modes in zero-mean modulated flow

In the zero-mean case, the Reynolds number is a function of time:

Re(t) = Rea sin(ωt).

�e basic state is now the modulated circular Couette () flow, which has an azimuthal velocity profile

that varies in time. Youd, Willis & Barenghi (2003; 2005) used nonlinear computations to reconsider the

stability of  flow and identified two stable modes, which they termed “reversing” and “nonreversing”

Taylor-Couette flow and presented the results of nonlinear computations to characterize the two modes.

Again, good agreement is obtained with the results of Riley and Laurence. For reasons that will be

explained shortly, reversing flow is here referred to as mode A and nonreversing flow as mode B.

�e question that arises from Youd et al. (2003; 2005) is whether or not A is due to (1) finite-

amplitude perturbations or (2) a linear instability. If (1) is the case, then the narrow-gap approximation of

Riley & Laurence is inappropriate. Conversely, the approximation is appropriate if (2) is the case. Avila,

Belisle, Lopez, Marques & Saric (2007) performed Floquet to consider this question. �e results verify

the stability of the  flow and nonlinear computations further characterizing the mode competition

between the two modes.Figure 1.4 shows the results of the Floquet analysis for the transition from the

basic state,  flow, to modes A and B. �e two curves correspond to the neutral stability curves of the

two modes, which are distinguished by their different symmetries.

�ere are four basic regions in figure 1.4, identified by the flow states which are possible in that region.

In the lowermost region, only  flow exists and is stable. �ere are two regions where either A or B

exist and an overlap region where both modes exist and are stable. �e point (Rea,c, ω) = (3.936, 119.4)

is the bicritical point where both modes bifurcate simultaneously from .

Avila et al. (2007) delineated the behavior in overlap region, shown in figure 1.5. At low frequency

mode A is the first mode to bifurcate while at higher frequency mode B is the first to bifurcate. �ere is

an overlap region, where both mode A and B are found by nonlinear computations to be stable. �e
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µH = -1

µH = +1

100

110
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160

170

Rea
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A and B

A
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1
ω

1

2

3

4
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7

2 3 4 5 6 7 81
ω

2 3 4 5 6 7 8

kc

(a) (b)

F 1.4. Results of Floquet analysis from Avila et al. (2007). �e solid circle denotes the bicritical

point (ω, Rea,c) = (3.936, 119.4).

3.5 43 4.5 5
ω

110

120

130

140

150

Rea

2 A

4 A & B

6 B

5 A & B

3 A & B

1 MCC

(A unstable)

(B unstable)

F 1.5. Stability regions for stable modes. Solid lines are from Floquet analysis above; dashed lines

are from nonlinear computations (from Avila et al. 2007).

mode selected is dependent on the initial conditions, e.g. if a stable mode A is obtained in region 2, and

the frequency is changed to lie within region 4, then the flow will remain as mode A. A mixed mode AB

exists in region 4, but is unstable.

�e simpler of the two modes is mode B. Figure 1.6 shows contours of the angular momentum rvθ

and azimuthal vorticity ωθ of this mode. �ese contours are obtained after the initial transients have

decayed, (typically after 10 modulation periods).
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0 T/8 T/4 T/2 7T/83T/8 5T/8 3T/4

rvθ

ωθ

F 1.6. Angular momentum (rvθ) and azimuthal vorticity (ωθ) contours of mode B (from Avila

et al. 2007).

At t = 0 the amplitude of the modulation is zero and a weak vortex pair from the previous modulation

cycle is present. At t = T /8, the angular momentum is nearly uniform since vortices have decayed to a

small amplitude. At t = T /4, the modulation is at a maximum in the positive sense and the vortices are

at a maximum as well. In the next few intervals, the cells decay until at t = 5T /8, the vortices are at a

minimum again. Since the symmetry in this plane is preserved for mode B, the behavior in the second

half of the period is the same as that of the first half of the period. �e overall half-period symmetry of

the mode is preserved: if vθ pulses in positive θ direction in the first half-period, then it will pulse in the

negative direction, with precisely the same amplitude, during the second half-period.

Contours of the same quantities are presented in figure 1.7 for mode A. Mode A differs in two

important regards from mode B. First, the overall phase of the behavior is shifted forward in time by

T /8, that is to say that the amplitude of the vortices in mode A are at a minimum at t = 0, versus mode

B where the minimum occurs at t = T /8. Second, the pattern is shifted by one-half of a wavelength in

the axial direction during the later half of the period.
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F 1.7. Angular momentum (rvθ) and azimuthal vorticity (ωθ) contours of mode A (from Avila

et al. 2007).

�us, both modes are synchronous with the period of the forcing and the difference between the

two modes can be explained in terms of their space-time symmetries. �is is the issue that arises when

terming the two flows “reversing” and “nonreversing.” �e names are perhaps logical when considering

only the radial and axial velocities. But they are misnomers when considering all aspects of the flow, and

especially so when considering that the behavior in mode A is an axial shift, not a reversal. It is simpler

and more accurate, therefore, to refer to the modes as two different bifurcations A and B from the same

basic state.

1.3. Experimental considerations

It is typically the case in Taylor-Couette experiments that every feasible measure to mitigate or eliminate

sources of noise is taken. Regardless of the measures taken, a variety of sources of noise are unavoidable.

�is noise can have a notable impact on the stability of a flow. In low-frequency modulated case, the
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effects of noise are pronounced because perturbations have a long time to grow and decay in a cycle.

�e choice of the appropriate time scale has attracted much attention in Taylor-Couette research.

In numerical computations with an infinite cylinder, there is only a single time scale at work: d2/ν,

the viscous diffusion time across the gap. In the finite-length experiments, some processes operate on

this time scale in addition to two other time scales: the viscous diffusion time across the length h2/ν

(e.g. Snyder 1969) and a mixed time-scale hd/ν as found empirically by Park, Crawford & Donnelly

(1981) and verified numerically by Czarny & Lueptow (2007). �ere is considerable disagreement in the

literature regarding which if any single time scale is most appropriate for the finite-length Taylor-Couette.

In the zero mean case, both Donnelly (1964) and �ompson (1968) observed that “transient vortices”

appear whenever the amplitude of the modulation Rea is greater than Re0

c . �e name transient is a slightly

misleading because it arises not because the vortices do decay as t → ∞, as one might expect, but because

the vortices grow from unavoidable imperfections in the experiments and decay during each period. �e

vortices are only present when |Re(t)| > Re0

c .

�ere is a growth phase when (Rea − Re0

c > Re0

c ) that is by an often longer phase of exponential

decay when (Rea − Re0

c < Re0

c ). �e length of the decay phase is inversely proportion to frequency.

At lower frequencies, the energy in the computations is reduced to low levels that are not physically

achievable. �ese levels are below the minimum level of “background” noise. �e transient vortices grow

from the background noise—which is in experiments is inevitably greater than the exponentially small

energy in the numerics. Barenghi & Jones (1989) addressed the issue of background noise by introducing

a constant parameter into the amplitude equation derived by Hall (1975). �is parameter was chosen

to be constant under the reasoning that the noise effects, such as convection, vary on a large time scale.

�is approach has little physical meaning, but significantly improves the agreement between theory and

experiments.



CHAPTER 2

EXPERIMENTAL APPARATUS

�e apparatus, shown in figures 2.1 and 2.2, is a reassembly of the original apparatus used by Takeuchi

& Jankowski (1981) for the study of spiral Poiseuille flow and later by Cooper, Jankowski, Neitzel &

Squire (1985) for temporally-ramped flow. Details of its original construction may be found in Takeuchi

(1979). It has been thoroughly overhauled with a new drive system, piping system, and digital-image

acquisition system. �e scale of the apparatus is uniquely large with the intent to minimize end effects

and—although not important in this case—allow a fully-developed axial flow.

�e inner cylinder is a stainless-steel pump shaft having a radius of ri = 25.4± 0.01 mm. �ree

precision-bored, borosilicate glass tube sections form the outer cylinder, each with a constant inner

diameter of ro = 50.80± 0.05 mm and nominal length 720 mm. �e design radius ratio is thus

η = ri/ro = 0.500± 0.002. �e length of the outer cylinder is length h = 2.93± 0.01 m, which

corresponds to an aspect ratio of Γ = 115± 1. �ere are four bearings along the length of the test section,

each having six degrees of freedom for alignment. �e inlet plenum and inner-cylinder bearing house are

traverse mounted and it is possible to disconnect the outer cylinder at any of the bearing locations. In

this manner, the annulus can be accessed for run-out determination without affecting the alignment. �e

entire test section is environmentally sealed to minimize the effect of undesirable temperature gradients.

�e inner and outer cylinders are rotated independently by Industrial Devices Corporation ()

21 stepper motors having 200 steps per motor revolution.  9 optical rotary encoders, with a

resolution of 2000 tics per motor revolution, measure position. A finite-difference approximation is

employed to obtained the instantaneous Reynold’s number from the position date. �e stepper motor

connects to a Bayside 60-10 10:1 gearbox which in turn connects via a timing belt to the inner and

outer cylinders. �e total gear ratios of the inner and outer cylinders are 200:7 and 240:7, respectively.

�e motors are controlled by  SmartStep23 microstepping integrated controllers, capable of 36000

microsteps per motor revolution. �e minimum and maximum rotation rates are 2.00× 10
−4

Hz and

70 Hz. �e acceleration range is 0.0015 to 31000 Hz/s.

Because the apparatus was originally designed for experiments involving axial flow, the ends of the

test section are not rigid plates or ramps as commonly found in Taylor-Couette experiments. At the lower

end of the test section is a step change to an annulus of η < 0.5. �is boundary is more stable than the

test section, and thus suppresses vortex propagation (Cooper et al. 1985). At the top of the test section is
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F 2.2. Photo of experimental apparatus.
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a fixed-area inlet. Experiments were performed with fluid in this inlet and hence the boundary behaves

like a free-slip surface. Here, vortices may be created or destroyed as necessary based on the test-section

state.

�e experimental fluid is 10 cSt (nominal) Dow Corning 200 Polydimethylsiloxane () with

Flamenco Superpearl 120C+ (mica-TiO2) flakes used for visualization. Durosense Type T thermocouples

are used to monitor the temperature in the upper and lower reservoirs, while resistence-temperature

detection () probes measure the temperature inside the test section chamber and in the room. �e

thermocouples connect to a National Instruments -6035 12-bit, 200 kHz data acquisition ()

card through a National Instruments -2345 signal conditioning unit. �e  probes connect to

a Hanyoung -9 process controller with 4-20 mA output that is connected to the  card. �e

temperature inside the chamber is typically between the temperature in the upper and lower reservoirs

and is used as a measure of the experimental fluid viscosity.

Fluid is pumped from the lower reservoir to the head tank using a Pacer OL50 vertical centrifugal

pump at a flow rate of 250 liters per minute (). Axial flow is gravity-driven from the head tank and

regulated by a Bürkert Type 1094 proportional valve and measured by a Bürkert Type 8025 inline flow

transmitter and Bürkert Type 6223 flow sensor. �e minimum measurable flow rate is 5.1± 0.1 ,

which corresponds to an axial flow velocity of 0.014 m/s (Re ≈ 380) in the test section. �e maximum

flow rate is 38± 1  or 0.1 m/s (Re ≈ 2640). Although this axial flow capability is not used in these

experiments, it was used to cycle the fluid between runs to minimize any axial temperature gradients,

clear remnants of vortices from preceding runs, and uniformly distribute the flakes.

A Sony XC-ST50 Monochrome charge-coupled device () video camera with a Computar -1214

monofocal lens is used for image acquisition. �e lens has a focal length of 12 mm and is configured

such that the viewable length is 610± 10 mm, a maximum based on the length of one test section. �e

camera is connected to a Linux Media Labs 44 capture card with 640 pixels wide by 480 high. �e

card is capable of sampling 4 channels simultaneously at a rate of 29.997 Hz.

�e results of various measures taken to verify the operation of the apparatus are presented in

Appendix A.



CHAPTER 3

EXPERIMENTAL METHOD

�e aspects of the experimental method can be group into three basic categories: motion control, data

acquisition, and image acquisition. A single C-language program performs all three operations.

3.1. Motion control

�e computer sends commands in the IDeal programming language to the motor controller using the

-232 protocol. �e controller operates the stepper motor using in an open loop; the encoder position

is read by the computer but not used as a part of the control loop. In fact, this makes sense because the

resolution of the encoder (2000 tics/revolution) is less than the resolution of the microstepping controller

(36000 tics/revolution).

Velocity commands are sent to the controller by discretizing the zero-mean sine wave. �e first step

in the discretization is to select the number of points in a period, usually chosen to be 66 points. Since

the acceleration and velocity of the stepper motor are specified as integer values—acceleration in the

range 1–30× 10
6

step/s
2

in increments of 1 and velocity in 0–1× 10
6

step/s in increments of 24—it is

necessary to chose the spacing of the points to minimize errors from resolution. �is could happen, for

example, if the sine wave was discretized using an extremely high number of points per period such that

small velocity change has a high error introduced by the rounding to the nearest integer value.

�e spacing of the time increments needs to be larger near the peaks of the sine wave (when the

acceleration is small) and can be smaller when the acceleration is large while the velocity is near zero.

Using the Chebyshev nodes in each half period accomplishes this goal as long as N /2 is odd:

tp =

 T {cos[π(N − 2p + 1)/N ] + 1}/4 1 ≤ p ≤ N /2

tp−N /2
+ T /2 N /2 + 1 ≤ p ≤ N

. (3.1)

�e sine wave for one period of the forcing is then generated simply:

Ω(tp) = sin(ωtp) 1 ≤ p ≤ N .

Since the controller can only preform trapezoidal move profiles, the acceleration between two points is
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F 3.1. Discretized sine wave used in motion control.

simply the slope of the line connecting the two points:

α =
Ω(tp+1)−Ω(tp)

tp+1 − tp

An example with 18 points is shown in Figure 3.1.

�e C-program measures the temperature and uses the temperature-viscosity regression (see §A.2) to

determine the velocities over the course of one period for a given Rea. �ese commands are assembled into

a loop and sent as a program to the controller in the IDeal language. Most runs consider developing a stable

flow at one (Re, ω) and then changing the to another parameter point. �is is done by instantaneously

changing the frequency and amplitude between forcing periods. �ere is no communication during a

run between the computer and the controller, so all decisions must be made at the start of the run.

3.2. Data acquisition

Measurements of temperature are made at the start of the run and position and temperature measurements

are recorded simultaneously with each image. �e initial temperature is used to determine the viscosity for

control purposes and motion while temperature data acquired during the course of the run are primarily

for verification purposes.

3.2.1. Motion

�e position of the cylinder is measured by an optical rotary encoder with a resolution of 2000 tics per

revolution of the motor shaft. With a gear ratio of 200:7 for the inner cylinder, this corresponds to
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approximately 57140 tics/revolution of the cylinder. An optical encoder outputs two step signals, that

are 90° out-of-phase. If the first channel leads the second channel, for example, then the counter knows

that the motor is rotating in the positive direction. During each encoder cycle, the signals of the two

channels will rise and fall 4 times. A quadrature clock converter is used to count each time the signal

rises or falls. �e clock converter quadruples the measurable resolution, bringing the motor and inner

cylinder resolution to 8000 and 228570 tics/revolution, respectively. �e clock converter is connected

to a counter on the  board, which is read each time (along with the temperature) in conjunction

with each image acquisition. In practice, the encoder used counts only about 99% of the theoretical

maximum, with a slight bias in the positive direction (see §A.3).

3.2.2. Temperature

�e temperature is measured in four places: inside the upper and lower tanks, inside the test chamber,

and just outside the test chamber. �e typical variation of these temperatures over the course of a run is

detailed in §A.2. �e initial temperature inside the test chamber is used as an estimate of the experimental

viscosity. �e temperature data acquired during the run can be used to determine the actual Re and ω at

a particular point in time. However, this is not typically done because the measurements are not generally

concerned with stability boundary determination and the changes are relatively small (within 1–2%).

3.3. Image acquisition

Space-time images are obtained by observing an axial cross-section of the flow. A camera is oriented such

that typically 24 Taylor cells are visible in an image, which is the maximum attainable over the length of

one glass section. �e technique, illustrated in figure 3.2, follows that of Linek & Ahlers (1998) and

countless other papers.

3.3.1. Visualization using reflective flakes

Reflective flakes are used as the visualization medium, which tend to align themselves with stream

surfaces while their finite thickness causes them to periodically undergo rapid turnover . �e behavior

of reflective flakes was considered theoretically by Savaş (1985) and compared to experiments. �ere

are two measurements to consider over the length of the frame: the mean and standard deviation of the

reflected intensities.

Each time a flake turns over, a spike in reflected light intensity is observed. When the flakes are

subject to steady or slowly varying conditions—for example a steady or modulated Couette flow—then
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F 3.2. Image post-processing flow chart.

the reflected light intensity is nearly constant. �e rate at which the flakes turn over is proportional to

square of the velocity, or the kinetic energy, which means that mean intensity will increase with increasing

energy.

When the flakes observe rapidly changing conditions such as a sudden ramp in velocity they will

re-orientate to the new conditions. When this reorientation happens, the reflected light intensity will peak

to a well-defined maximum value and then settle on a new, steady value. �e realignment is essentially a

random process, so the standard deviation will spike as well.

In the case of a more complicated flow such as a Taylor-vortex flow, the reflected light intensity will

vary over the extent of the vortex cell as the flakes cycle through the cell, continuously realigning with

the streamlines as they circulate. �e presence of a cell thus increases the standard deviation of reflected

intensities. �is is often used to determine the onset of the Taylor-vortex flow instability, (e.g. Weisberg

et al. 1997).

Once the instability sets in, the standard deviation of reflected light will increase with increasing

energy because the flakes will realign more rapidly as they cycle through a cell, resulting in greater variation



20

from the mean alignment. �is rate of increase proportional to energy will level off as the flakes achieve

the maximum intensity. �e mean intensity is proportional to the energy in the cell, again since the flakes

turn over more rapidly as they rotate faster.

In this manner, the mean and standard deviation can be used as a measure of the flow energy. In an

unsteady flow with large variations, however, it can be difficult to decouple the effects above to determine

which factor is influencing the mean or standard deviation. Furthermore, nonuniform lighting can impart

biases in the measurements that are not easily quantified. Because the problem under study is indeed

unsteady, statistical calculations on the light intensity are used qualitatively.

3.3.2. Construction of space-time diagrams

Space-time diagrams offer a wealth of information about the spatiotemporal behavior of the flow. Before

starting a run, a series of background images are acquired with the inner cylinder stationary. �e apparatus

is then operated at a specified Rea and ω and image data are collected at a frequency of about 1 Hz

throughout the run.

�e intensities in the time history frame (a) are divided by the corresponding intensities of the

background image (i.e. a value of 1 in the result indicates that the intensity of the pixel is unchanged

from that of the background image). A slice is taken from the center of the resultant image (b), spanning

the usable height of the frame and averaged over 15 pixels (typically) in the azimuthal direction. �ese

slices are assembled into a time history, rescaled based on the minimum and maximum values, and then

normalized using an adaptive histogram filter.

3.3.3. Determination of the wavenumber

�e wavenumber is determined by finding distances between the local minima intensities of an axial slice.

�e pixel intensities of a particular slice (c) are low-pass filtered and a peak-finding algorithm locates

the peaks by finding where the finite-difference of the intensity crosses zero, neglecting any peaks that

are closer than physically meaningful or are above a certain threshold (typically I = 0.2). �ese peaks

correspond to the inflow jets (the thin, dark structures). �e peak selected in the dark region varies by at

most ±2 pixels for a constant Re flow. �e mean wavenumber k̄ and standard deviation σk for the slice

are then determined using the measured dimension of a pixel (d).



21

3.3.4. Determination of traveling wave frequency

Cross-correlation is employed to determine the frequency f of traveling waves having similar dynamics

to that observed by Ning et al. (1990). �is is performed quite simply by selecting a reference slice at the

start of a space-time diagram and then computing the correlation coefficient of the rest of the history

image with respect to the reference slice. In the presence of the traveling wave, the correlation coefficient

is periodic, with a slow decay due to sensor noise and other factors. A Blackman filter is applied to

the signal and then the discrete Fast-Fourier Transform is taken, using the peak as the frequency of the

traveling wave.



CHAPTER 4

RESULTS AND DISCUSSION

4.1. Transition to to mode B

�e first result considered is the transition from the modulated Circular Couette flow to mode B. �e

case ω = 6.1 is considered as an illustration of the typical behavior on this apparatus.

Figure 4.1(a) shows the basic state at Rea well below critical Rea,c ≈ 120, which is here characterized by

transient vortices. �is is as expected from previous results by �ompson (1968) and Walsh & Donnelly

(1988). �e relatively small amplitude of these vortices is demonstrated by the blurry appearance of the

image that results from a small difference in light intensity between the background and the experimental

image. Spikes in intensity, illustrated in Figure 4.1(b) are observed to occur at two times: the first

corresponds to maximum positive velocity and the second corresponds to maximum acceleration α.

Spikes at the corresponding negative peaks should also be expected, but do not appear here. It is believed

that the flakes align optimally with the light source in the positive direction. �us when the velocity is

negative, a consequence of the small amplitude of the transient vortices is that the energy change is not

enough to register under the present lighting conditions.
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F 4.1. (a) Time history at Rea = 92, ω = 6.1 showing subcritical vortex structure that grows and

decays in each period. (b) standard deviation compared to Reynolds number and angular acceleration.

Around Rea = 120, a front is observed to move into the center test section. �is front is a traveling

wave of supercritical vortices propagating from the free-slip boundary at the top of the apparatus,

apparently supplying energy to the transient vortices in the lower part of the apparatus. A time history

on a much longer time scale in figure 4.2 shows the front clearly at z ≈ 17. Above z ≈ 17, the flow is

considered to be mode B based on the wave number of k ≈ 3.4. �ere is an apparent overlap region for
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z ∈ [9, 17], and noise amplified vortices below z ≈ 9. �e vortices in the lower region have an unsteady

wave number.
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F 4.2. Time history at Rea = 120, ω = 6.1 showing front between noise-sustained vortices below

z ≈ 17 and mode B above.

As Rea is further increased, this front moves further in the negative z-direction. Around Rea = 140

(figure 4.3), the front is no longer in the center section. At this point, it is possible to consider the

frequency f of the traveling wave, plotted in figure 4.4, which decreases with increasing Re. �ese

frequencies are comparable in magnitude the frequencies observed by Ning et al. (1990) for vortices

induced by a spatial ramp in the test section.
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F 4.3. Time history at Rea = 140, ω = 6.1, showing a traveling wave with frequency f ≈ 0.06.

Around Rea = 200, f is over 100 and can be neglected: the time scale of the wave is much greater

than the observed time scale of the dynamics of modes A and B (see §4.3). It is in this range that the

primary results of this thesis are obtained.
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F 4.5. (a) Direction of fluid motion for stationary cylinders subject to a postive radial temperature

gradient; (b) leftward spiral; and (c) rightward spiral (adapted from Deters & Egbers 2005).

4.2. Temperature dependence

In agreement with experimental results by Deters & Egbers (2005), a radial temperature gradient has

significant impacts on the flow dynamics. If the cylinders are stationary, a positive radial temperature

gradient (for example if the temperature in the room is increasing with time) is observed to induce

circulation over the length of the apparatus, shown qualitatively in figure 4.5(a). �e fluid moves upward

close to the outer cylinder and return back down the inner cylinder. When the cylinders are rotated,

inducing a spiral vortex state, as shown in (b) (c), is induced. �is spiral is analogous to that of spiral

Poiseuille flow.

Because the forcing is about a zero mean, this spiral is allowed to propagate into modes A and B when
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|Re| < Rea,c. �e direction of the spiral can be observed to depend on the sign of the radial temperature

gradient in figure 4.6. When the radial gradient is positive and the forcing velocity is small, the spiral is

apparent as a rightward spiral. Conversely, a negative gradient induces a leftward spiral, demonstrated by

the change in direction triggered by turning on the air conditioning at t/T = 6.
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F 4.6. Data at Rea = 120, ω = 2.5 showing the change in behavior with the sign of the radial

temperature gradient: (a) time history; (b) highlighted inflow jets and markings to illustrate spiral

direction; b temperature of air inside test section chamber.

A second effect of the radial temperature gradient is to trigger an entirely new wavenumber in the

flow. At Rea = 240 and ω = 1, the wavenumber is expected to be in the range k ∈ [2.6, 3.3]. �is

is the result as expected in figure 4.7(a). In (b) of the same figure, the effect of the radial gradient is

pronounced, selecting a wavenumber that would otherwise be unstable. �e qualitative behavior is still

that of mode A as explained in the following section.

4.3. Modes A & B

Figure 4.8 shows a representative example of (a) stable mode A and (b) stable mode B. By all of the available

measurements—and notwithstanding the small traveling wave noted above–the dynamic behavior of the

two modes is as expected from the numerics. �is can most readily be seen by the defining characteristics

of the flow: the behavior of the dark inflow jets. In (b), the jets are observed to remain fixed in the axial

direction which contrasts with the shift of λ/2 observed in (a). �e measured wavenumbers agree well

with the numerics.
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�e agreement between the energy as indicated by the standard deviation in reflected intensity and

the kinetic energy (KE) in the numerical results is excellent as well, but some justification of this assertion

is necessary. Each half period is characterized by alternating intensities: e.g. during t/T ∈ [0.125, 0.625]

the intensity appears dimmer than t/T ∈ [0.625, 1.125]. Both the mean intensity and standard deviation

show periodic step changes between these intervals, which correspond to the instants that the numerics

predict a reversing pulse in the azimuthal velocity. Since the light is off-center and nonuniform, the step

change is attributable to a rapid realignment of the flakes and not a substantive change in the energy of

the flow. Hence, the standard deviation is arbitrarily scaled here by the mean squared intensity, which

mitigates the impact from nonuniform lighting.

�e minimum level of decay is related to the frequency of the forcing and does not define a distinction

between modes A and B. When Re(t) is |Re < Re0

c , the flow undergoes a period of exponential decay,

which has a pronounced effect at low frequencies. At higher frequency, the period of exponential decay

is shorter and the energy does not fall as low. �is is likely because the decay rate is independent of

frequency.

Of note is the small spike in (a) just before the energy rises again, which is not present in the theoretical

energy data. �is spike occurs at the same time and with the same amplitude as the pulse synchronous

with the acceleration in figure 4.1(b). A similar (though fainter) pulse is also observed at t/T = 0.5,

with further supports the assertion that nonuniformities in lighting prevented the negative pulse from

appearing in figure 4.1.

4.4. Transition from one mode to the other

�e empirical data at Rea = 240 suggest that the two modes compete within a region bounded by

ω ∈ [1.5, 2.5]. �e observed wavenumbers of all runs at Rea = 240 are presented in figure 4.9.

�e criteria for stability here are that the flow has settled on a wavenumber that is constant within the

experimental uncertainty in k, ±0.1. �e flows presented in §4.3 fulfill this criterion. �ey correspond

to ω far from the bound of coexistence region predicted by the numerics to be at ω ∈ [1.6, 2.2].

Far away from the competition region, the flow is stable and settles on a wavenumber in the expected

range for mode A at lower Rea and mode B at higher Rea. When close to the competition region, e.g.

ω = 1, occasionally the flow would experience difficulty in settling on a stable wavenumber.

�e dashed lines and triangles represent unsteady behavior. �is is a consistent behavior in the range
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F 4.9. Diagram of observed behaviors at Re = 240. • corresponds to observed stable wave numbers,

while5 and4 respectively represent the overall maxima and minima of unsteady wavenumbers over all

runs. �e range of the coexistence region as computed by the nonlinear computations (Avila et al. 2007)

is shown on the abscissa.

ω ∈ [1.5, 2.5]. For these frequencies k varies within kmin to kmax. �e range of k does not necessary

cover this entire range, as enumerated for each observation in figure 4.10. �e sawtooth behavior can be

seen in figure 4.11

�is variation is often sawtooth-like as seen between approximately t/T = 3 and t/T = 8 in the

previous figure. When the wavenumber varies in this manner, k nominally decreases until it suddenly

increases. �is behavior may be due to Eckhaus, which inevitably leads to creation or destruction of

a vortex pair if the wave number is outside of the stable band. When a vortex pair is created, the flow

adjusts to the new wave number for the number of vortices in the test section. �e creation or destruction

is sudden, which leads to a step change in the wave number. So, in the case where the k is decreasing, a

vortex pair will be created whenever k leaves the stable Eckhaus band.

Although the sawtooth appearance is not by any means the typical behavior of the unstable

wavenumber, it is the most the distinctive feature that appears. �e absence of sawtooth-like variation

suggests that the new wave number is more susceptible to another instability or the noise than it is

to Eckhaus. �e noise is important here because a stable k is only stable for small perturbations. If a

perturbation is sufficiently large, then it can trip a transition to a different k. As the condition approach

the competition region, the magnitude of the disturbance needed to render the flow unstable decreases

until it’s quite possible that it is below the level of the noise. �is results in a constantly varying wave
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number that due to the nature of noise is not deterministic even though trends are sometimes observed

for short periods of time.

4.5. Time scales

In studying competition between the two modes, the shortcomings of the present apparatus for considering

this problem become vividly clear. Issues with temperature were resolved by enclosing the apparatus, the

influence of the traveling wave at low Rea was mitigated by focusing on Rea > 200, and the dynamics of

the two modes were characterized by focusing on ω far from the competition region.

But, as attempts were made to study behavior within the competition region, the data were

complicated by the influence of two time scales on which different aspects of the flow operate: d2/ν and

hd/ν. �ere is no evidence of any development occurring on the h2/ν time scale because it is impossible

in the current installation to perform a run on the order of 240 hours in length. Figure 4.12 shows a
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representative example of the two time scales, which was acquired starting from rest. �e qualitative

2.8

3.2

3.6

4.0

0.0

d2/ν

t/T

hd/ν

k

0

0 5 10 15 20 25 30 35 40 45

50

0.5

100

1.0

150

1.5

200

2.0

250

2.5

300

 0
 5

 z 10
15
20

F 4.12. Representative example of a flow settling on a uniform and steady wavenumber. Conditions

are Re = 240, ω = 1.0.

behavior of the flow is well established with 15d2/ν and the wave number decreases rapidly until about

75d2/ν. At this point, the wavenumber slowly decreases until 275d2/ν, where the subsequent behavior

is uncertain because the flow conditions were naïvely switched to the next point after 48 forcing periods.

�us, this run does not conclusively establish the final wavenumber of the flow. Even so, it’s safe to say

that it is 3.2± 0.1, as there is no evidence of instability and flow was within this range by 100d2/ν.

�e transients would almost certainly be sufficiently reduced within 10hd/ν in a manner analogous

to the typical 10d2/ν that is observed in the nonlinear computations. Even when operating far from the

competition region, the flow still typically would take a time on the order of hd/ν to settle on a uniform

and steady wavenumber—although it is clear which mode is present much sooner than this time.
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CONCLUSIONS

Although complications were encountered throughout the course of experimentation, the results are

encouraging. Although the data do not directly support coexistence of the two modes, they certainly do

not preclude it. �ere is a very clear region of competition in which no stable flow was attained. �is is

most likely attributable to noise that, despite the best efforts, was not sufficiently minimized to the extent

that the apparatus could be considered “perfect”. �is is especially evident when considering features

such as the traveling wave at low velocity, or the difficulties with convection effects.

�e most relevant time scale was found to be at least hd/ν, which is approximately 2 hours with the

current configuration. �e hot Arizona summer, unfortunately, did not allow runs that lasted more than

10–12 hours, which meant that it was difficult to perform a survey and obtain stable flows within the

alloted time for an experiment. �is is the reason why the results focus purely on Rea = 240. At this Rea,

the signal-to-noise ratio was sufficiently high that problems with the traveling wave were minimal and

stable flows could be obtained outside of the competition region.

Future work on the project should include a complete overhaul of the apparatus or—preferably for the

study of this problem—construction of an table-top apparatus with a much smaller viscous time scale.

Although the present apparatus may have a future yet in the study of problems related to its original

intended purpose (Couette flows with an axial pressure gradient), the impracticality of its size and the

challenges in eliminating temperature gradients severely limit the effectiveness of results in modulated

flows.

In addition, the tolerances of all aspects of the apparatus are not at the O(10
−3

mm) level typical of

modern Taylor-Couette experiments. Even with replacement of worn components, the alignment of the

three independent outer-cylinder sections is almost certainly impossible to complete within this tolerance

range. �e expense involved in an overhaul to get the apparatus to this level is comparable to that of

constructing a smaller apparatus that is better suited to modulated flows.

Regardless of the tolerances, however, the inclusion of rigid end plates in the test section would likely

do a great deal towards addressing the traveling wave issues and time that it takes for the apparatus to

settle on a uniform wavenumber. �e time scale benefit would result because the end plates discretize the

range of stable wave numbers. It is also much simpler to introduce endplates into numerical computations

than it is to study a free-slip surface.
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�e results certainly support the value of reflective flake experiments and have benefited from their

economy. Even so, considering this problem using techniques such as Particle-Image Velocimetry ()

and/or Laser Doppler Velocimetry would greatly enhance the breadth of data and potential for comparison

with the theory. , in particular, would facilitate a direct comparison with flow field parameters of the

numerics, e.g. the angular momentum and vorticity of figure 1.6.

�e data presented conclusively verify the stability of two stable modes in the zero-mean modulated

regime of the Taylor-Couette system. �e agreement between the observed wave numbers and the

computations is quite good, and the dynamical behavior of each mode is verified using the available

experimental methods, most significantly the behavior of the inflow jet in each half period. For all data

that demonstrated a stable mode, the behavior of these jets corresponds to the that’s expected to be stable

in that region according to the nonlinear computations. For parameter values near the competition

region as expected from the numerical computations, there is strong evidence of competition between

the modes, as the flow is more susceptible to noise than the stable flows observed at conditions far from

the region.

Even despite the noise effects, the quality of the agreement between nonlinear computations for a

theoretically perfect, infinite cylinder and an finite experimental apparatus with various types of noise

and unique boundary conditions is encouraging. Through interaction with computational scientists,

the understanding of the behavior observed experiments is much more readily ascertained. Although

they approach the solution to the problem with a distinctly different approaches, the experiments and

numerics should eventually converge on a single answer when all effects are considered and accounted

for. �e occasional disagreement between the two essentially incomplete answers to the question that is

addressed here usually offers suggestion for either scientist to consider a part of the parameter space in

greater detail or try to determine the underlying cause responsible for the discrepancy.

Even though the parameters in the Taylor-Couette problem seems deceptively simply when compared

to those of laminar–turbulent transition, the amount of work that remains to be done to improve the

correlation between theory and experiments demonstrates the value of considering a simple though

related problem as a means to finding and understanding of more complex one.
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A.1. Alignment

Each bearing mount on the apparatus has 6 degrees of freedom for alignment. �e outer cylinder is

traverse mounted and allows disconnection of a glass section at any of the bearings. �e cylinders can

then be raised and the inner cylinder accessed without affecting the alignment.

�e inner cylinder is more or less “aligned by default”. �ere is a very narrow range of alignment in

which the cylinder will rotate freely. �is range depends chiefly on the alignment of the outer cylinder: as

long as the outer cylinder is aligned and the inner cylinder is concentric within a relatively small range,

then the inner cylinder will rotate. It is difficult to quantify the absolute alignment of the inner cylinder

since even the order of tightening the bolts could throw it out of alignment.

However, the alignment can be quantified relative to the outer cylinder. For the outer cylinder, each

bearing was aligned independently, starting from the bottom. A teflon ring machined to 2.46 cm was

used as a guide. �e ring was placed on the inner cylinder, and each bearing was adjusted until the space

between the ring and the outer cylinder wall was approximately equal around its circumference. �is

means that the maximum possible misalignment at each bearing is 0.04 cm or 1.6%.

After alignment, run-out of the inner cylinder was measured at each bearing using a dial displacement

gauge with resolution of 0.002 cm. It was found to reach a maximum of 0.025 cm (1.0%) at the

midsection. Run-out of the outer cylinder was unmeasurable, which is expected since the position of the

bearings are immobile after alignment.

Including the dimensional tolerances and the foregoing, the gap width over one glass section is

controlled to within 1.9%. Including local deviations near the bearings, the variation in gap width over

the entire length is 3.7%.

A.2. Temperature and viscosity

�e temperature dependence of the viscosity was measured to within 0.3% using an Ubbelohde viscometer

manufactured by Cannon Instrument Company. An exponential regression (with a correlation coefficient

of 0.9996) was fitted to the data:

ν(T ) = 15.98e−0.01849T ,

valid for T ∈ [10, 30]°C. �e propagated uncertainty in viscosity is ±0.1cSt.

Measurements are made in four locations during a run: inside the upper and lower tanks, in the
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chamber near the center glass section, and in the room outside the chamber. �e difference in temperature

between the two reservoirs is nominally 0.5°C. �e chamber temperature is typically sinusoidal with an

amplitude of 0.1°C about the upper-tank temperature. Since the temperature inside the chamber is the

closest measurement to the center glass section—where images are acquired—it is used for the viscosity

calculation.

Typical variation over 30 forcing periods at ω = 5.1 is shown in figure A.1 below. �e temperature
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F A.1. Typical temperature variation over 30 forcing periods at ω = 5.1.

inside the chamber tracks the sinusoidally-varying room temperature with a reduced magnitude of

variation. In this case, it is higher than the room temperature, but this is not necessarily the case.

Since the Prandtl number of PDMS is much higher than air, it is less susceptible to changes in

temperature than the surrounding air. �us, although the variation inside the chamber is nominally

±0.1°C, the actual variation seen by the fluid is even lower.

Including all of the above uncertainties, the instantaneous uncertainty in Re and ω are 1.4% and

2.2%, respectively.

A.3. Modulation

�e experiments are performed by modulating the velocity of the inner cylinder about a zero mean.

�e controller that processes commands sent to the stepper motor only has the capability of accepting

"trapezoidal" move profiles. �is means that the acceleration between any two velocities can only be

constant, although there will be some unavoidable ramp up and ramp down.

In order to verify the discretized sine wave as described in §3.1, the encoder position was read by the
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computer over a series of periods. �is was performed with 66 points in a period, which was the typical

resolution used throughout the experiments. Re is determined from θ measurements by using the finite

centered difference:

Rei =
θi+1 − θi−1

2(ti+1 − ti−1)

where i is an index corresponding to a particular point in time. �e actual frequency and amplitude were

then recovered using nonlinear fitting:

Re(t) = A0 sinA1t + A2

where A0, A1, and A2 are fitting parameters corresponding to Rea, ω and the phase φ, respectively. �e

correlation coefficient of the fit is nominally 0.9999. φ is typically O(10
4) and can safely be neglected.

One regular and predictable error was that the fitted ω obtained was always greater than the

commanded frequency. After rounding to nearest tenth using the appropriate significance, this was only

significant for ω > 3.0, which added 0.1 to ω (e.g. for ω = 3.0, A1 = 3.1).

A comparison of the measured velocity and a pure, fitted sine wave is shown in figure A.2. �e

position is plotted here because the finite differencing to determine Re introduces an error that is on

the order of the measured error. �ere is one other remark to make on this figure, which concerns
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F A.2. Error in generated sine wave from a pure sine wave as measured by the encoder.
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the observed positive drift in the error. �is drift is attributable to the encoder, which inconsistently

measured between 7800 and 7900 pulses per revolution, biased in the positive direction. �e DAQ

card does not support Z -indexing, which sets the counter appropriately each time a full revolution is

made by the encoder. If this had been the case—which it is when the encoder is connected to the motor

controller—there is no bias in one direction or the other. �ere also was no bias when a different encoder

was used, but that unit ceased to function properly.

As explained previously, the encoder is directly connected to the DAQ card in order to record the

data on the computer. �e drift is barely registrable after taking the finite difference for fitting purposes.

�us, because no other meaningful quantitative measurements are made from the encoder data, the drift

is neglected. When ignoring the drift, it can be seen that the error is periodic.

A.4. Critical Reynold’s number for the first birfucation in the steady case

�e criterion for stability of circular Couette flow in the case of steady rotation is well-known and

established. For η = 0.5, this criterion is that as long as Re0 < Re0

c = 68.19, then the Couette flow is

stable. Above Re0

c , the flow bifurcates to Taylor-vortex flow.

A slowly ramped flow is used to determine Rec. Park et al. (1981) empirically determined the ramping

rate in order to avoid hysteresis in accelerating or decelerating the flow. �ey defined a criteria based on a

nondimensional acceleration,

a =
δRe0

δt∗
hd
ν

< 10

where t∗ is in seconds. Unfortunately, the minimum acceleration on the present apparatus was found to

be a = 97. Alternative methods, such the stepping method used by Weisberg (1996) are significantly

more complicated and it is only necessary here to get an idea of the Re0

c , not to establish a definitive value.

Figure A.3 shows a plot of standard deviation of reflected intensity σI versus Re0
for acceleration

and deceleration at this rate for Re0 ∈ [10, 87]. From this plot and the associated time history, it is

necessary to decide on a criterion for transition. For reasons due to noise or the non-quasistatic ramping, a

non-axisymmetric mode appeared just before the expected axisymmetric Taylor-vortex flow. �e expected

axisymmetric mode is of interest here and is therefore the criterion used for the determination of Rec. �e

non-axisymmetric mode that appears just before onset of the axisymmetric mode is of low amplitude, as

σI is on the order of the value when no vortices are present. It may well be a small-amplitude modulation
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effect due to noise from the stepper motor which does. �e motor does, impose such a minute modulation

on Re0 because of the discretization inherent in its design.
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F A.3. Standard deviation plotted for ramping Re0
to determine Re0

c .

Even with this relatively large acceleration by the standards of Park et al. (1981), minimal evidence

of hysteresis was observed. �e results show Re0

c = 68.1 during ramp up and Re0

c = 71.8, which

corresponds to 5% hysteresis. �is compares favorably with the expected value, as Re0

c = 68.19 is

within this range. For simplicity, I take the mean and introduce the appropriate uncertainty, finding

Re0

c = 70± 1.

�e data were processed and an average of the measured standard deviation was taken at each point,

shown below in figure A.4.
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A.5. Length measurement

A 24d ruler with markings at 1d intervals was placed on the surface of the outer cylinder to calibrate the

length measurement. �e design distortion of 0.3% over the frame was not measurable and the size of

a pixel was found to be 0.04d . �e peak finding algorithm considers peaks below a certain threshold,

typically I < 0.4. When including the width of a peak, the uncertainty in measured wavenumber is

±0.1.

A.6. Vibration and roughness

�e vibration and the roughness of the inner cylinder were also measured and found to be negligible.

�e roughness was measured using a Mitutoyo Surftest SJ-201P Profilometer and found to be within the

dimensional tolerance. PCB 356A32 tri-axial accelerometers measured the vibration on the apparatus

during modulated rotation. �e vibration in all axes is periodic with an amplitude less than 0.01 m
2
/s

and a frequency of 200 Hz. �e small magnitude of this vibration is expected because vibrations created

by the motor (approximately 3 times greater in amplitude) are significantly damped by the usage of a

timing belt.
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